Изобретение относится к металлургии, а именно к литейным теплоустойчивым сталям, используемым для изготовления отливок, работающих в условиях высоких температур и абразивного изнашивания, например для получения роликов машин непрерывного литья заготовок (МНЛЗ).
Известна сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, алюминий, титан, бор, кальций, РЗМ и железо при следующем соотношении компонентов, мас.%:
Углерод - 0,26-0,34
Кремний - 0,15-0,35
Марганец - 0,30-0,60
Хром - 2,00-2,50
Никель - 1,20-1,50
Молибден - 0,40-0,60
Ванадий - 0,25-0,40
Алюминий - 0,01-0,05
Титан - 0,01-0,10
Бор - 0,0001-0,002
Кальций - 0,005-0,050
РЗМ - 0,005-0,080
Железо - Остальное
(См. авт. св. СССР 821527, С 22 С 38/51).
Недостатком известной стали является низкая теплостойкость и износостойкость из-за присутствия алюминия и редкоземельных металлов. Редкоземельные металлы загрязняют сталь неметаллическими включениями с высокой плотностью, которые почти не удаляются из расплава и снижают указанные свойства стали. Кроме того, сталь содержит дорогой и дефицитный металл никель и дорогостоящие лигатуры с редкоземельными металлами.
Известна также сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, никель, титан, медь, алюминий, кальций, бор, РЗМ и железо при следующем соотношении компонентов, мас.%:
Углерод - 0,35-0,45
Кремний - 0,30-0,40
Марганец - 0,40-0,70
Хром - 1,00-1,80
Ванадий - 0,50-1,20
Молибден - 1,25-1,50
Никель - 0,50-1,00
Титан - 0,05-0,15
Медь - 0,50-0,90
Алюминий - 0,50-0,90
Кальций - 0,01-0,12
Бор - 0,003-0,005
РЗМ - 0,05-0,10
Железо - Остальное.
Кроме того, должны соблюдаться следующие соотношения:
2) разница вышеуказанных сумм=15-32;
.
(См. а.с. СССР 1622418, С 22 С 38/54).
Недостатком известной стали является низкая износостойкость и теплостойкость за счет высокого содержания в ней алюминия 0,5-0,9%, что приводит к загрязнению стали неметаллическими включениями корунда и шпинели неблагоприятной формы, а также к дополнительному загрязнению стали включениями в результате вторичного окисления. Кроме того, наличие в составе стали других высокоактивных элементов кальция и РЗМ также увеличивает загрязненность стали продуктами их взаимодействия в жидком расплаве и снижает вышеуказанные свойства.
Наиболее близким аналогом к заявляемому объекту является износостойкая сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций, железо при следующем соотношении компонентов, мас.%:
Углерод - 0,20-0,30
Кремний - 0,17-0,37
Марганец - 0,25-0,60
Хром - 1,40-1,80
Молибден - 0,25-0,40
Ванадий - 0,40-1,10
Титан - 0,06-0,12
Бор - 0,003-0,005
Кальций - 0,005-0,01
Железо - Остальное,
при этом должно соблюдаться соотношение .
(См. патент РФ 2137859, С 22 С 38/32).
Недостатком данной стали также является низкая твердость и износостойкость при удовлетворительной теплостойкости. Это связано с тем, что в стали образуется недостаточное количество упрочняющей фазы с высокой твердостью, в частности карбидов и карбонитридов ванадия и титана из-за низкого их содержания. Кроме того, низкое содержание указанных элементов приводит к тому, что большая часть хрома и молибдена расходуется на образование карбидов, что обедняет твердый раствор и не позволяет получать у стали высокую теплостойкость.
В основу изобретения поставлена задача разработать состав стали, обладающей одновременно комплексом высоких технических свойств: теплостойкостью и износостойкостью, позволяющих использовать ее для изготовления роликов МНЛЗ.
Поставленная задача решается тем, что известная сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций и железо, согласно изобретению дополнительно содержит азот при следующем соотношении компонентов, мас.%:
Углерод - 0,15-0,35
Кремний - 0,17-0,40
Марганец - 0,25-0,60
Хром - 1,20-2,00
Молибден - 0,25-0,45
Ванадий - 0,90-1,40
Титан - 0,09-0,18
Бор - 0,002-0,008
Кальций - 0,006-0,012
Азот - 0,01-0,04
Железо - Остальное,
при этом должны соблюдаться следующие соотношения:
Известно применение азота в сталях в качестве микролегирующего элемента для улучшения их свойств (см. Азот в металлах/В.В. Аверин, А.В. Ревякин, В. И. Федорченко и др. - М. : Металлургия, 1976. - 224 с.; Бабаскин Ю.З. Структура и свойства литой стали. - Киев: Наукова думка, 1980. - 240 с.; Научные и технологические основы микролегирования стали /В.Л. Пилюшенко, В.А. Вихлевщук, М.А. Поживанов и др. - М.: Металлургия, 1994. - 384 с.).
В заявляемой стали азот также предназначен для микролегирования ее. Однако наравне с этим азот при совместном взаимодействии с ванадием и титаном в заявляемой стали проявляет новое техническое свойство, заключающееся в создании эффекта модифицирования стали при одновременном усилении эффекта микролегирования.
Это происходит следующим образом. Микролегирование и модифицирование стали азотом совместно с ванадием и титаном, при соблюдении заявляемых соотношений и условий, обеспечивает достижение исключительной мелкодисперсности первичной литой структуры путем создания дисперсности и равномерности выделения упрочняющих фаз и повышения их стойкости к коагуляции. Такая мелкозернистость сохраняется и при последующих нагревах стали в рабочих условиях за счет обеспечения торможения роста зерна дисперсными частицами образованных нитридных и карбонитридных фаз. Таким образом, достигаемое при микролегировании и модифицировании азотом, титаном и ванадием диспергирование структуры перлитной стали, непосредственное упрочнение ее нитридной и карбонитридной фазами приводит к повышению износостойкости и теплостойкости стали при высоких температурах, что позволяет использовать ее для изготовления роликов МНЛЗ, работающих в условиях высоких температур и абразивного изнашивания. При этом достигается сочетание повышения прочности с повышением устойчивости упрочняющих фаз к коагуляции. В основе этого явления лежит снижение диффузионной подвижности углерода вследствие присутствия в растворе ванадия и титана, уменьшения равновесной растворимости углерода и повышения азотом энергии активации коагуляции карбидной фазы.
Помимо заявляемых соотношений компонентов, указанные в формуле изобретения соотношения суммы концентраций ванадия и титана к концентрациям углерода и азота (условие 1 и 2), а также к сумме концентраций углерода и азота (условие 3) способствуют активизации протекания выше описанных процессов. При этом весь молибден сохраняется в твердом растворе без участия в процессах карбидообразования, способствуя тем самым значительному повышению теплостойкости стали.
На основании вышеизложенного можно сделать вывод, что состав заявляемой стали не следует явным образом из известного уровня техники, а следовательно, соответствует условию патентоспособности "Изобретательский уровень".
Углерод (С), взятый в заявляемом количестве, является одним из главных упрочнителей стали, резко повышающим твердость и износостойкость стали за счет образования карбидов, нитридов и карбонитридов легирующих элементов и легирования твердого раствора.
При содержании углерода менее 0,15 мас.% уменьшается износостойкость стали из-за снижения в ней упрочняющей фазы. При содержании углерода более 0,35 мас. %, происходит охрупчивание структуры - снижается пластичность, падает сопротивление износу.
Кремний (Si) - является технологической добавкой обеспечивающей при выплавке стали необходимые пластические свойства металла. Кремний является раскислителем, и взятый в заявляемом количестве, способствует более полному усвоению хрома, ванадия и титана, увеличивает прокаливаемостъ и способствует смягчению матрицы.
Содержание кремния более 0,40 мас.% нецелесообразно, так как это приводит к снижению прокаливаемости и износостойкости, вследствие специфического воздействия кремния на другие компоненты стали. Содержание кремния в стали меньше 0,17 мас.% не обеспечит предварительное раскисление стали.
Марганец (Мn) также является технологической добавкой, позволяющей получить структуру необходимой стабильности, раскисляет сталь.
Для заявляемой стали, содержание хрома (Сr) находится в пределах 1,2-2,0 мас. %. Это обеспечивает получение необходимой теплостойкости, образование в стали карбидов дополнительно увеличивает износостойкость и твердость.
В присутствии молибдена (Мо) в заявляемом количестве (0,25-0,45%) улучшается протекание процессов нитридообразования при фазовой перекристаллизации стали, происходит более равномерное распределение нитридных, карбидных и карбонитридных частиц по объему литой стали, устраняются их скопления. Молибден, гомогенизируя структуру стали, способствует при изготовлении роликов МНЛЗ достижению большей однородности свойств по сечению отливки при высоких температурах, когда в отливке возможно образование горячих трещин. Это улучшает теплостойкость, износостойкость и трещиноустойчивость стали.
При содержании молибдена менее 0,25 мас.% и более 0,45 мас.% положительное влияние его на свойства стали значительно снижается.
Совместное присутствие титана (Ti), бора (В) и кальция (Са) позволяет в процессе отливки роликов из заявляемой стали эффективно управлять процессами первичной и вторичной кристаллизации. Титан, взятый в заявляемом количестве, микролегирует и модифицирует сталь. Нитриды титана, образующиеся в жидкой стали, являются дополнительными центрами кристаллизации. Совместное присутствие титана и бора ведет к равномерному распределению карбидов. Кроме того, титан является рафинизатором стали, очищая расплав от неметаллических включений.
Бор (В) - сильный карбюризатор и модификатор, способствует измельчению структуры. Присутствие бора в количестве (0,002-0,008 мас.%) устраняет появление карбидной сетки по границам зерен, что улучшает теплостойкие и износостойкие свойства стали.
Кальций (Са) (0,006-0,012 мас.%), является активным раскислителем, модификатором и глобуляризатором включений и способствует равномерному их распределению по объему отливок и получению однородной структуры.
При введении в состав стали кальция в количестве менее 0,006 мас.% его положительное влияние на структуру стали незначительно, а содержание кальция более 0,012 мас.% приводит к вторичному окислению и загрязнению расплава неметаллическими включениями, что снижает свойства стали.
Азот (N), введенный в сталь в заявляемом количестве (0,01-0,04 мас.%), взаимодействуя с легирующими элементами, титаном и ванадием, образует нитриды и карбонитриды, которые, являясь упрочняющей фазой, значительно усиливают свойства стали, такие как твердость, теплостойкость и износостойкость. Это происходит за счет того, что указанные частицы являются фазовыми составляющими стали, взаимодействующими с твердым раствором (α- и γ- железа) при термической обработке. Присутствие в стали нитридов и карбонитридов, при переходе через критическую точку Ас3, приводит к образованию более мелкого зерна аустенита. Также нитриды и карбонитриды тормозят рост зерна аустенита при дальнейшем его нагреве, вплоть до растворения этих фаз. Кроме того, азот, увеличивает прокаливаемость стали. Все это приводит к повышению теплостойкости и износостойкости стали.
Введение в заявляемую сталь азота в количестве менее 0,01 мас.% и более 0,02 мас. % нецелесообразно, так как в первом случае азота недостаточно для образования нужного количества упрочняющей фазы, а во втором - получается переизбыток нитридов и карбонитридов и загрязнение границ зерен, что приводит к значительному ухудшению теплостойких и износостойких свойств стали.
Присутствие в заявляемой стали повышенных добавок ванадия (V) и титана (Ti) позволяет в большей степени сохранить в твердом растворе хром и молибден, что улучшает теплостойкость стали, а образование высокотвердых нитридов, карбидов и карбонитридов ванадия и титана с микротвердостью Н50>30000МПа обеспечивает высокие значения твердости и износостойкости.
Отношения суммы ванадия и титана к углероду, азоту (условия 1 и 2), а также к сумме углерода и азота (условие 3) в заявляемых соотношениях способствуют активизации протекания процессов карбонитридообразования в стали, а также одновременно препятствует участию молибдена в указанных процессах. Это приводит к повышению теплостойкости, твердости и износостойкости стали.
Использование соотношений компонентов при условиях 1-3 в пределах, превышающих заявляемые значения, нецелесообразно, так как это приводит к резкому увеличению количества карбидов, нитридов и карбонитридов. При этом увеличиваются их размеры и неоднородность распределения в металлической матрице, создается перенапряжение последней, в результате чего, происходит снижение износостойких и теплостойких свойств стали.
Использование соотношений компонентов при условиях 1-3 ниже заявляемых значений также нецелесообразно, так как при этом в стали образуется недостаточное количество карбидных, нитридных и карбонитридных фаз, что не обеспечивает требуемых свойств заявляемой стали. Кроме того, в процессах карбонитридообразования начинает участвовать молибден, в результате чего, происходит снижение легированности твердого расплава молибденом и снижение теплостойкости стали.
Пример. В индукционной тигельной печи емкостью 60 кг с основной футеровкой выплавляли опытные составы заявляемой стали (составы 1-5, табл.1) и стали, взятой за прототип (составы 6, 7, табл. 1), по общепринятой технологии. Титан, бор, кальций и азот вводили в сталь в виде ферротитана ФТи 35, ферробора ФБи 20, силикокальция СК 45 и феррованадия азотированного ФВнА 47. Из опытных составов отливали трефовидные пробы согласно ГОСТ 977-88, которые подвергали термической обработке по режиму: отжиг при 950oС, закалка от 1000oС в масло, отпуск при 650oС, охлаждение на воздухе.
Для определения теплостойкости стали, проводили четырехчасовой нагрев образцов после вышеуказанного режима термической обработки при температурах 650, 680, 710oС в соляной ванне, после чего производили замер твердости.
Износостойкость определяли согласно ГОСТ 23.208-79. Износостойкость исследуемых образцов оценивали путем сравнения их износа с износом эталонного образца. В качестве эталона использовалась сталь 45.
В табл. 2 приведены результаты образцов, изготовленных из заявляемой стали и стали - прототипа.
Полученные результаты, позволяют сделать вывод, что заявляемая сталь по сравнению с прототипом имеет более высокую износостойкость (на 8-17%) и более высокую теплостойкость (на 2,5-6,5%) при высоких температурах, что позволяет использовать заявляемую сталь для изготовления роликов МНЛЗ.
Использовать составы стали с содержанием компонентов, выходящих за заявляемые минимальные (состав 1) и максимальные (состав 5) значения, нецелесообразно, так как в этих случаях у сталей наблюдается уменьшение износостойкости и теплостойкости.
название | год | авторы | номер документа |
---|---|---|---|
ЧУГУН | 2003 |
|
RU2230817C1 |
ИЗНОСОСТОЙКАЯ СТАЛЬ | 1998 |
|
RU2137859C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2295587C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2003 |
|
RU2259416C2 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ | 2010 |
|
RU2437954C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2365666C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2365667C1 |
ВЫСОКОПРОЧНАЯ СТАЛЬ | 2011 |
|
RU2481416C1 |
Износостойкий чугун | 1991 |
|
SU1803460A1 |
ЛИТАЯ ШТАМПОВАЯ СТАЛЬ | 1996 |
|
RU2095460C1 |
Изобретение относится к металлургии, в частности к составу литейной теплоустойчивой стали, используемой, например, для изготовления роликов машин непрерывного литья заготовок (МНЛЗ). Предложенная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,15-0,35; кремний 0,17-0,40; марганец 0,25-0,60; хром 1,20-2,00; молибден 0,25-0,45; ванадий 0,90-1,40; титан 0,09-0,18; бор 0,002-0,008; кальций 0,006-0,012; азот 0,01-0,04; железо - остальное. При этом должны соблюдаться следующие соотношения:
(%V+%Ti)/%C=4,5-6,6;
(%V+%Ti)/%N=39,5-99,0;
(%V+%Ti)/(%C+%N)=4,05-6,2.
Техническим результатом изобретения является получение стали, обладающей одновременно теплостойкостью и износостойкостью, что позволяет использовать ее для изготовления роликов МНЛЗ. 2 табл.
Сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций, и железо, отличающаяся тем, что она дополнительно содержит азот при следующем соотношении компонентов, мас. %:
Углерод - 0,15-0,35
Кремний - 0,17-0,40
Марганец - 0,25-0,60
Хром - 1,20-2,00
Молибден - 0,25-0,45
Ванадий - 0,90-1,40
Титан - 0,09-0,18
Бор - 0,002-0,008
Кальций - 0,006-0,012
Азот - 0,01-0,04
Железо - Остальное
при этом должны соблюдаться следующие соотношения:
ИЗНОСОСТОЙКАЯ СТАЛЬ | 1998 |
|
RU2137859C1 |
Штамповая сталь | 1989 |
|
SU1622418A1 |
Теплоустойчивая сталь | 1989 |
|
SU1680796A1 |
SU 1592383 A1, 15.09.1990 | |||
Конструкционная сталь | 1982 |
|
SU1054442A1 |
Литейная сталь | 1979 |
|
SU821527A1 |
Жаропрочная сталь | 1956 |
|
SU106372A1 |
СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ | 2000 |
|
RU2187202C2 |
US 4537644, 27.08.1985 | |||
US 5284529 A, 08.02.1994. |
Авторы
Даты
2002-07-10—Публикация
2000-06-27—Подача