СТАЛЬ Российский патент 2002 года по МПК C22C38/32 

Описание патента на изобретение RU2184792C2

Изобретение относится к металлургии, а именно к литейным теплоустойчивым сталям, используемым для изготовления отливок, работающих в условиях высоких температур и абразивного изнашивания, например для получения роликов машин непрерывного литья заготовок (МНЛЗ).

Известна сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, алюминий, титан, бор, кальций, РЗМ и железо при следующем соотношении компонентов, мас.%:
Углерод - 0,26-0,34
Кремний - 0,15-0,35
Марганец - 0,30-0,60
Хром - 2,00-2,50
Никель - 1,20-1,50
Молибден - 0,40-0,60
Ванадий - 0,25-0,40
Алюминий - 0,01-0,05
Титан - 0,01-0,10
Бор - 0,0001-0,002
Кальций - 0,005-0,050
РЗМ - 0,005-0,080
Железо - Остальное
(См. авт. св. СССР 821527, С 22 С 38/51).

Недостатком известной стали является низкая теплостойкость и износостойкость из-за присутствия алюминия и редкоземельных металлов. Редкоземельные металлы загрязняют сталь неметаллическими включениями с высокой плотностью, которые почти не удаляются из расплава и снижают указанные свойства стали. Кроме того, сталь содержит дорогой и дефицитный металл никель и дорогостоящие лигатуры с редкоземельными металлами.

Известна также сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, никель, титан, медь, алюминий, кальций, бор, РЗМ и железо при следующем соотношении компонентов, мас.%:
Углерод - 0,35-0,45
Кремний - 0,30-0,40
Марганец - 0,40-0,70
Хром - 1,00-1,80
Ванадий - 0,50-1,20
Молибден - 1,25-1,50
Никель - 0,50-1,00
Титан - 0,05-0,15
Медь - 0,50-0,90
Алюминий - 0,50-0,90
Кальций - 0,01-0,12
Бор - 0,003-0,005
РЗМ - 0,05-0,10
Железо - Остальное.

Кроме того, должны соблюдаться следующие соотношения:

2) разница вышеуказанных сумм=15-32;
.

(См. а.с. СССР 1622418, С 22 С 38/54).

Недостатком известной стали является низкая износостойкость и теплостойкость за счет высокого содержания в ней алюминия 0,5-0,9%, что приводит к загрязнению стали неметаллическими включениями корунда и шпинели неблагоприятной формы, а также к дополнительному загрязнению стали включениями в результате вторичного окисления. Кроме того, наличие в составе стали других высокоактивных элементов кальция и РЗМ также увеличивает загрязненность стали продуктами их взаимодействия в жидком расплаве и снижает вышеуказанные свойства.

Наиболее близким аналогом к заявляемому объекту является износостойкая сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций, железо при следующем соотношении компонентов, мас.%:
Углерод - 0,20-0,30
Кремний - 0,17-0,37
Марганец - 0,25-0,60
Хром - 1,40-1,80
Молибден - 0,25-0,40
Ванадий - 0,40-1,10
Титан - 0,06-0,12
Бор - 0,003-0,005
Кальций - 0,005-0,01
Железо - Остальное,
при этом должно соблюдаться соотношение .

(См. патент РФ 2137859, С 22 С 38/32).

Недостатком данной стали также является низкая твердость и износостойкость при удовлетворительной теплостойкости. Это связано с тем, что в стали образуется недостаточное количество упрочняющей фазы с высокой твердостью, в частности карбидов и карбонитридов ванадия и титана из-за низкого их содержания. Кроме того, низкое содержание указанных элементов приводит к тому, что большая часть хрома и молибдена расходуется на образование карбидов, что обедняет твердый раствор и не позволяет получать у стали высокую теплостойкость.

В основу изобретения поставлена задача разработать состав стали, обладающей одновременно комплексом высоких технических свойств: теплостойкостью и износостойкостью, позволяющих использовать ее для изготовления роликов МНЛЗ.

Поставленная задача решается тем, что известная сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций и железо, согласно изобретению дополнительно содержит азот при следующем соотношении компонентов, мас.%:
Углерод - 0,15-0,35
Кремний - 0,17-0,40
Марганец - 0,25-0,60
Хром - 1,20-2,00
Молибден - 0,25-0,45
Ванадий - 0,90-1,40
Титан - 0,09-0,18
Бор - 0,002-0,008
Кальций - 0,006-0,012
Азот - 0,01-0,04
Железо - Остальное,
при этом должны соблюдаться следующие соотношения:



Известно применение азота в сталях в качестве микролегирующего элемента для улучшения их свойств (см. Азот в металлах/В.В. Аверин, А.В. Ревякин, В. И. Федорченко и др. - М. : Металлургия, 1976. - 224 с.; Бабаскин Ю.З. Структура и свойства литой стали. - Киев: Наукова думка, 1980. - 240 с.; Научные и технологические основы микролегирования стали /В.Л. Пилюшенко, В.А. Вихлевщук, М.А. Поживанов и др. - М.: Металлургия, 1994. - 384 с.).

В заявляемой стали азот также предназначен для микролегирования ее. Однако наравне с этим азот при совместном взаимодействии с ванадием и титаном в заявляемой стали проявляет новое техническое свойство, заключающееся в создании эффекта модифицирования стали при одновременном усилении эффекта микролегирования.

Это происходит следующим образом. Микролегирование и модифицирование стали азотом совместно с ванадием и титаном, при соблюдении заявляемых соотношений и условий, обеспечивает достижение исключительной мелкодисперсности первичной литой структуры путем создания дисперсности и равномерности выделения упрочняющих фаз и повышения их стойкости к коагуляции. Такая мелкозернистость сохраняется и при последующих нагревах стали в рабочих условиях за счет обеспечения торможения роста зерна дисперсными частицами образованных нитридных и карбонитридных фаз. Таким образом, достигаемое при микролегировании и модифицировании азотом, титаном и ванадием диспергирование структуры перлитной стали, непосредственное упрочнение ее нитридной и карбонитридной фазами приводит к повышению износостойкости и теплостойкости стали при высоких температурах, что позволяет использовать ее для изготовления роликов МНЛЗ, работающих в условиях высоких температур и абразивного изнашивания. При этом достигается сочетание повышения прочности с повышением устойчивости упрочняющих фаз к коагуляции. В основе этого явления лежит снижение диффузионной подвижности углерода вследствие присутствия в растворе ванадия и титана, уменьшения равновесной растворимости углерода и повышения азотом энергии активации коагуляции карбидной фазы.

Помимо заявляемых соотношений компонентов, указанные в формуле изобретения соотношения суммы концентраций ванадия и титана к концентрациям углерода и азота (условие 1 и 2), а также к сумме концентраций углерода и азота (условие 3) способствуют активизации протекания выше описанных процессов. При этом весь молибден сохраняется в твердом растворе без участия в процессах карбидообразования, способствуя тем самым значительному повышению теплостойкости стали.

На основании вышеизложенного можно сделать вывод, что состав заявляемой стали не следует явным образом из известного уровня техники, а следовательно, соответствует условию патентоспособности "Изобретательский уровень".

Углерод (С), взятый в заявляемом количестве, является одним из главных упрочнителей стали, резко повышающим твердость и износостойкость стали за счет образования карбидов, нитридов и карбонитридов легирующих элементов и легирования твердого раствора.

При содержании углерода менее 0,15 мас.% уменьшается износостойкость стали из-за снижения в ней упрочняющей фазы. При содержании углерода более 0,35 мас. %, происходит охрупчивание структуры - снижается пластичность, падает сопротивление износу.

Кремний (Si) - является технологической добавкой обеспечивающей при выплавке стали необходимые пластические свойства металла. Кремний является раскислителем, и взятый в заявляемом количестве, способствует более полному усвоению хрома, ванадия и титана, увеличивает прокаливаемостъ и способствует смягчению матрицы.

Содержание кремния более 0,40 мас.% нецелесообразно, так как это приводит к снижению прокаливаемости и износостойкости, вследствие специфического воздействия кремния на другие компоненты стали. Содержание кремния в стали меньше 0,17 мас.% не обеспечит предварительное раскисление стали.

Марганец (Мn) также является технологической добавкой, позволяющей получить структуру необходимой стабильности, раскисляет сталь.

Для заявляемой стали, содержание хрома (Сr) находится в пределах 1,2-2,0 мас. %. Это обеспечивает получение необходимой теплостойкости, образование в стали карбидов дополнительно увеличивает износостойкость и твердость.

В присутствии молибдена (Мо) в заявляемом количестве (0,25-0,45%) улучшается протекание процессов нитридообразования при фазовой перекристаллизации стали, происходит более равномерное распределение нитридных, карбидных и карбонитридных частиц по объему литой стали, устраняются их скопления. Молибден, гомогенизируя структуру стали, способствует при изготовлении роликов МНЛЗ достижению большей однородности свойств по сечению отливки при высоких температурах, когда в отливке возможно образование горячих трещин. Это улучшает теплостойкость, износостойкость и трещиноустойчивость стали.

При содержании молибдена менее 0,25 мас.% и более 0,45 мас.% положительное влияние его на свойства стали значительно снижается.

Совместное присутствие титана (Ti), бора (В) и кальция (Са) позволяет в процессе отливки роликов из заявляемой стали эффективно управлять процессами первичной и вторичной кристаллизации. Титан, взятый в заявляемом количестве, микролегирует и модифицирует сталь. Нитриды титана, образующиеся в жидкой стали, являются дополнительными центрами кристаллизации. Совместное присутствие титана и бора ведет к равномерному распределению карбидов. Кроме того, титан является рафинизатором стали, очищая расплав от неметаллических включений.

Бор (В) - сильный карбюризатор и модификатор, способствует измельчению структуры. Присутствие бора в количестве (0,002-0,008 мас.%) устраняет появление карбидной сетки по границам зерен, что улучшает теплостойкие и износостойкие свойства стали.

Кальций (Са) (0,006-0,012 мас.%), является активным раскислителем, модификатором и глобуляризатором включений и способствует равномерному их распределению по объему отливок и получению однородной структуры.

При введении в состав стали кальция в количестве менее 0,006 мас.% его положительное влияние на структуру стали незначительно, а содержание кальция более 0,012 мас.% приводит к вторичному окислению и загрязнению расплава неметаллическими включениями, что снижает свойства стали.

Азот (N), введенный в сталь в заявляемом количестве (0,01-0,04 мас.%), взаимодействуя с легирующими элементами, титаном и ванадием, образует нитриды и карбонитриды, которые, являясь упрочняющей фазой, значительно усиливают свойства стали, такие как твердость, теплостойкость и износостойкость. Это происходит за счет того, что указанные частицы являются фазовыми составляющими стали, взаимодействующими с твердым раствором (α- и γ- железа) при термической обработке. Присутствие в стали нитридов и карбонитридов, при переходе через критическую точку Ас3, приводит к образованию более мелкого зерна аустенита. Также нитриды и карбонитриды тормозят рост зерна аустенита при дальнейшем его нагреве, вплоть до растворения этих фаз. Кроме того, азот, увеличивает прокаливаемость стали. Все это приводит к повышению теплостойкости и износостойкости стали.

Введение в заявляемую сталь азота в количестве менее 0,01 мас.% и более 0,02 мас. % нецелесообразно, так как в первом случае азота недостаточно для образования нужного количества упрочняющей фазы, а во втором - получается переизбыток нитридов и карбонитридов и загрязнение границ зерен, что приводит к значительному ухудшению теплостойких и износостойких свойств стали.

Присутствие в заявляемой стали повышенных добавок ванадия (V) и титана (Ti) позволяет в большей степени сохранить в твердом растворе хром и молибден, что улучшает теплостойкость стали, а образование высокотвердых нитридов, карбидов и карбонитридов ванадия и титана с микротвердостью Н50>30000МПа обеспечивает высокие значения твердости и износостойкости.

Отношения суммы ванадия и титана к углероду, азоту (условия 1 и 2), а также к сумме углерода и азота (условие 3) в заявляемых соотношениях способствуют активизации протекания процессов карбонитридообразования в стали, а также одновременно препятствует участию молибдена в указанных процессах. Это приводит к повышению теплостойкости, твердости и износостойкости стали.

Использование соотношений компонентов при условиях 1-3 в пределах, превышающих заявляемые значения, нецелесообразно, так как это приводит к резкому увеличению количества карбидов, нитридов и карбонитридов. При этом увеличиваются их размеры и неоднородность распределения в металлической матрице, создается перенапряжение последней, в результате чего, происходит снижение износостойких и теплостойких свойств стали.

Использование соотношений компонентов при условиях 1-3 ниже заявляемых значений также нецелесообразно, так как при этом в стали образуется недостаточное количество карбидных, нитридных и карбонитридных фаз, что не обеспечивает требуемых свойств заявляемой стали. Кроме того, в процессах карбонитридообразования начинает участвовать молибден, в результате чего, происходит снижение легированности твердого расплава молибденом и снижение теплостойкости стали.

Пример. В индукционной тигельной печи емкостью 60 кг с основной футеровкой выплавляли опытные составы заявляемой стали (составы 1-5, табл.1) и стали, взятой за прототип (составы 6, 7, табл. 1), по общепринятой технологии. Титан, бор, кальций и азот вводили в сталь в виде ферротитана ФТи 35, ферробора ФБи 20, силикокальция СК 45 и феррованадия азотированного ФВнА 47. Из опытных составов отливали трефовидные пробы согласно ГОСТ 977-88, которые подвергали термической обработке по режиму: отжиг при 950oС, закалка от 1000oС в масло, отпуск при 650oС, охлаждение на воздухе.

Для определения теплостойкости стали, проводили четырехчасовой нагрев образцов после вышеуказанного режима термической обработки при температурах 650, 680, 710oС в соляной ванне, после чего производили замер твердости.

Износостойкость определяли согласно ГОСТ 23.208-79. Износостойкость исследуемых образцов оценивали путем сравнения их износа с износом эталонного образца. В качестве эталона использовалась сталь 45.

В табл. 2 приведены результаты образцов, изготовленных из заявляемой стали и стали - прототипа.

Полученные результаты, позволяют сделать вывод, что заявляемая сталь по сравнению с прототипом имеет более высокую износостойкость (на 8-17%) и более высокую теплостойкость (на 2,5-6,5%) при высоких температурах, что позволяет использовать заявляемую сталь для изготовления роликов МНЛЗ.

Использовать составы стали с содержанием компонентов, выходящих за заявляемые минимальные (состав 1) и максимальные (состав 5) значения, нецелесообразно, так как в этих случаях у сталей наблюдается уменьшение износостойкости и теплостойкости.

Похожие патенты RU2184792C2

название год авторы номер документа
ЧУГУН 2003
  • Вдовин К.Н.
  • Колокольцев В.М.
  • Шубина М.В.
  • Шубин И.Г.
RU2230817C1
ИЗНОСОСТОЙКАЯ СТАЛЬ 1998
  • Рашников В.Ф.
  • Морозов А.А.
  • Тахаутдинов Р.С.
  • Колокольцев В.М.
  • Вдовин К.Н.
  • Анцупов В.П.
RU2137859C1
РЕЛЬСОВАЯ СТАЛЬ 2005
  • Ворожищев Владимир Иванович
  • Павлов Вячеслав Владимирович
  • Девяткин Юрий Дмитриевич
  • Пятайкин Евгений Михайлович
  • Годик Леонид Александрович
  • Могильный Виктор Васильевич
  • Дементьев Валерий Петрович
  • Козырев Николай Анатольевич
  • Шур Евгений Авелевич
  • Тиммерман Наталья Николаевна
  • Гаврилов Владимир Васильевич
  • Никитин Сергей Валентинович
  • Михайлов Алексей Сергеевич
  • Горкавенко Виктор Васильевич
  • Бойков Дмитрий Владимирович
RU2295587C1
РЕЛЬСОВАЯ СТАЛЬ 2003
  • Ворожищев В.И.
  • Павлов В.В.
  • Девяткин Ю.Д.
  • Пятайкин Е.М.
  • Шур Е.А.
  • Дементьев В.П.
  • Козырев Н.А.
  • Никитин С.В.
  • Корнева Л.В.
RU2259416C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437954C1
РЕЛЬСОВАЯ СТАЛЬ 2008
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
RU2365666C1
РЕЛЬСОВАЯ СТАЛЬ 2008
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
RU2365667C1
ВЫСОКОПРОЧНАЯ СТАЛЬ 2011
  • Шевакин Александр Федорович
  • Куликова Людмила Викторовна
  • Филиппов Георгий Анатольевич
  • Углов Владимир Александрович
  • Пантюхин Александр Павлович
RU2481416C1
Износостойкий чугун 1991
  • Карпенко Михаил Иванович
  • Левиков Владимир Ильич
  • Соленова Татьяна Ивановна
  • Бадюкова Светлана Михайловна
SU1803460A1
ЛИТАЯ ШТАМПОВАЯ СТАЛЬ 1996
  • Гурьев А.М.
  • Андросов А.П.
  • Жданов А.Н.
  • Кириенко А.М.
  • Свищенко В.В.
RU2095460C1

Иллюстрации к изобретению RU 2 184 792 C2

Реферат патента 2002 года СТАЛЬ

Изобретение относится к металлургии, в частности к составу литейной теплоустойчивой стали, используемой, например, для изготовления роликов машин непрерывного литья заготовок (МНЛЗ). Предложенная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,15-0,35; кремний 0,17-0,40; марганец 0,25-0,60; хром 1,20-2,00; молибден 0,25-0,45; ванадий 0,90-1,40; титан 0,09-0,18; бор 0,002-0,008; кальций 0,006-0,012; азот 0,01-0,04; железо - остальное. При этом должны соблюдаться следующие соотношения:
(%V+%Ti)/%C=4,5-6,6;
(%V+%Ti)/%N=39,5-99,0;
(%V+%Ti)/(%C+%N)=4,05-6,2.

Техническим результатом изобретения является получение стали, обладающей одновременно теплостойкостью и износостойкостью, что позволяет использовать ее для изготовления роликов МНЛЗ. 2 табл.

Формула изобретения RU 2 184 792 C2

Сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, титан, бор, кальций, и железо, отличающаяся тем, что она дополнительно содержит азот при следующем соотношении компонентов, мас. %:
Углерод - 0,15-0,35
Кремний - 0,17-0,40
Марганец - 0,25-0,60
Хром - 1,20-2,00
Молибден - 0,25-0,45
Ванадий - 0,90-1,40
Титан - 0,09-0,18
Бор - 0,002-0,008
Кальций - 0,006-0,012
Азот - 0,01-0,04
Железо - Остальное
при этом должны соблюдаться следующие соотношения:


Документы, цитированные в отчете о поиске Патент 2002 года RU2184792C2

ИЗНОСОСТОЙКАЯ СТАЛЬ 1998
  • Рашников В.Ф.
  • Морозов А.А.
  • Тахаутдинов Р.С.
  • Колокольцев В.М.
  • Вдовин К.Н.
  • Анцупов В.П.
RU2137859C1
Штамповая сталь 1989
  • Сулейманов Низами Мамед Оглы
  • Байрамов Черкез Гасан Оглы
  • Гаджибалаев Гаджибала Алибала Оглы
  • Мусаев Вагиф Паша Оглы
  • Гусейнов Фирудин Сафар Оглы
  • Роич Леонид Абрамович
  • Абдуллаев Рафик Халыг Оглы
  • Низамов Гамидпаша Гамид Оглы
  • Ибрагимов Рамиз Ибиш Оглы
  • Панахов Тахир Муса Оглы
SU1622418A1
Теплоустойчивая сталь 1989
  • Куликова Людмила Викторовна
  • Ланская Ксения Алексеевна
  • Мазуров Евгений Федорович
  • Орлов Евгений Дмитриевич
  • Ежов Анатолий Александрович
  • Гутовский Игорь Болиславович
  • Попов Виктор Александрович
  • Чижик Андрей Александрович
  • Петреня Юрий Кириллович
  • Шмачков Владимир Георгиевич
SU1680796A1
SU 1592383 A1, 15.09.1990
Конструкционная сталь 1982
  • Меньшикова Тамара Яковлевна
  • Повар Владимир Иосипович
  • Голубятникова Татьяна Николаевна
  • Кальнер Вениамин Давыдович
  • Юрасов Станислав Августович
  • Седунов Виктор Константинович
SU1054442A1
Литейная сталь 1979
  • Позняк Леонид Александрович
  • Примеров Сергей Николаевич
  • Чернявский Анатолий Иванович
  • Федоренко Анатолий Павлович
  • Алексеев Юрий Павлович
  • Вихляев Александр Александрович
  • Ковалев Виктор Павлович
  • Пикус Людмила Самойловна
SU821527A1
Жаропрочная сталь 1956
  • Тутов И.Е.
SU106372A1
СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ 2000
  • Барбэ И.И.
RU2187202C2
US 4537644, 27.08.1985
US 5284529 A, 08.02.1994.

RU 2 184 792 C2

Авторы

Колокольцев В.М.

Вдовин К.Н.

Тахаутдинов Р.С.

Бодяев Ю.А.

Терентьев В.Л.

Носов А.Д.

Женин Е.В.

Кандаков А.И.

Долгополова Л.Б.

Даты

2002-07-10Публикация

2000-06-27Подача