Изобретение относится к способу получения первичных и вторичных спиртов с алифатическим и/или ароматическим радикалом, применяемых в парфюмерии, при получении полимеров, красителей и других продуктов промышленного органического синтеза (Краткая химическая энциклопедия. Т.4. - М: Советская энциклопедия, 1965, с.1002).
Известны способы получения спиртов, заключающиеся в каталитическом гидрировании кетонов и альдегидов (Заявка Японии 1272540, МКИ С 07 С 33/22, С 07 С 29/14. РЖХим, 1990: 24 H 60 П). Основным недостатком этих процессов является необходимость применения повышенных температур и давления. В частности, при гидрировании ацетофенона до 1-фенилэтанола используется 15-50 атм при 140-220oС.
Наиболее близким к предлагаемому техническому решению (прототипу) является электрокаталитическое гидрирование циклогексанона до циклогексанола при атмосферном давлении и комнатной температуре в двухкамерном электролизере с ионообменной диафрагмой и применением в качестве католита водных растворов гидроксидов щелочных металлов с анодом из платины и медным катодом, активированным скелетным никелевым катализатором (А.П.Томилов, И.В.Кирилюс. Катодные синтезы органических препаратов. - Алма-Ата: Наука, 1982, с. 44-45).
Установлено (см. пример 2), что активность катализатора при электрокаталитическом гидрировании альдегидов и кетонов существенно снижается за 5-6 синтезов более чем в 5 раз.
Предлагаемое техническое решение позволяет значительно увеличить срок действия катализатора без уменьшения выхода по току и веществу в процессах электрокаталитического гидрирования альдегидов и кетонов, содержащих ароматический и/или алифатические радикалы, за счет применения в католите водных растворов неокисляющихся солей (сульфатов, нитратов, фосфатов и т.п.) или их смеси с водными растворами гидроксидов щелочных металлов.
В ароматическом и/или алифатическом радикале альдегида или кетона могут содержаться алкоксильные, гидроксильные группы.
В предлагаемом способе в качестве католита могут быть использованы либо водные растворы, содержащие неокисляющиеся соли и гидроксид щелочного металла, либо водные растворы, содержащие только неокисляющиеся соли. При этом концентрация неокисляющихся солей может составлять - 1-15 мас.%, концентрация гидроксида щелочного металла составляет не более 5 мас.%. Превышение указанных пределов возможно, но не имеет практического смысла, так как не приводит к улучшению показателей процесса. Процесс проводят при температуре 20-60oС.
Предлагаемое техническое решение может быть использовано для получения первичных и вторичных спиртов с алифатическим и/или ароматическим радикалом, при этом срок действия никеля Ренея увеличивается более чем в 4 раза. Кроме того, может быть использован катализатор, отработанный при электрокаталитическом гидрировании с применением в качестве католита водных растворов гидроксидов щелочных металлов (см. пример 3).
Нижеприведенные примеры иллюстрируют сущность предлагаемого технического решения.
Пример 1. В качестве католита используют водный раствор сульфата натрия с массовой долей 10%.
Реактивы: Циклогексанон - 0,3 М (95 г, 100 мл); Ni-Al сплав - 10 г; раствор NaOH с массовой долей 20% - 500 мл; раствор Na2SО4 с массовой долей 10% - 400 мл; бензол - 400 мл.
Аппаратура: Двухкамерный электролизетер с мешалкой и ионообменной диафрагмой МА-40. Анод платиновый. Катод медный, активированный скелетными никелевым катализатором.
Никель-алюминиевый сплав (содержание Ni 50 мас.%) обрабатывают согласно общепринятой методике (А.П.Томилов, И.В.Кирилюс. Катодные синтезы органических препаратов. - Алма-Ата: Наука, 1982, с. 44-45) и вносят в катодную камеру с 400 мл водного раствора сульфата натрия с массовой долей 10%. Анолитом является 250 мл водного раствора гидроксида натрия с массовой долей 10%. При температуре 25oС производят насыщение катализатора водородом при токе 5 А в течение 30 минут. Циклогексанон вводят в катодное пространство, силу тока повышают до 10 А (плотность тока 5 кА/м2) и ведут процесс в течение 7 часов. По окончании электролиза раствор католита декантируют с катализатора и экстрагируют бензолом. Выход циклогексанола по току 66%, по веществу 87%. Для исследования работоспособности катализатора процесс гидрирования повторяют в тех же условиях, не меняя катализатор. После 24 синтезов скорость гидрирования по сравнению с первоначальной уменьшается на 5%, выход по току и веществу практически не меняется.
Пример 2. Синтез проводится на свежеприготовленном Ni Ренея в условиях примера 1, но с использованием согласно прототипа в качестве католита водного раствора гидроксида натрия с массовой долей 5%.
После 5 синтезов без смены катализатора скорость гидрирования уменьшается в 5,3 раза, выход циклогексанола снижается до 57%.
Пример 3. Синтез проводится на Ni Ренея, потерявшем активность при использовании в течение 5 синтезов в условиях примера 2. Католит - водный раствор сульфата натрия с массовой долей 10%. Остальные параметры процесса аналогичны примеру 1. Процесс гидрирования проводят в течение 7,1 часа, то есть практически с той же скоростью, как и на свежеприготовленном катализаторе. Выход по току и выход цикиклогексанола аналогичны примеру 1.
Пример 4. Гидрирование циклогексанола проводят в условиях примера 1, но используя анод из магнетита. Выход по току, выход циклагексанола, работоспособность катализатора аналогичны примеру 1.
Пример 5. Гидрирование циклогексанола проводят в условиях примера 1, изменяя состав католита и температуру. Работоспособность катализатора определяют по числу синтезов, прекращающихся при уменьшении скорости гидрирования по сравнению с первоначальной на 10%. Уменьшение скорости гидрирования на 10% считают потерей работоспособности катализатора. Результаты приведены в табл.1.
Пример 6. Гидрирование ацетофенона проводят при 60oС в условиях примера 1, добавляя в католит 80 мл 95%-ного этанола. Выход 1-фенилэтанола по току 71%, по веществу 82%. После 20 синтезов без замены катализатора скорость гидрирования по сравнению с первоначальной уменьшается на 10%, выход по веществу не изменяется.
Пример 7. Гидрирование соединений проводят при 20oС в условиях примера 1. Работоспособность катализатора определяют по методике, указанной в примере 4. Результаты приведены в табл.2.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АМИНОВ | 2001 |
|
RU2218325C2 |
Способ получения 6,10,14-триметилпентадеканона-2 | 1978 |
|
SU789489A1 |
СПОСОБ ПОЛУЧЕНИЯ α-АЦЕТИЛЕНОВЫХ γ-ДИОЛОВ | 2001 |
|
RU2206559C1 |
Способ получения метилизобутилкетона | 1976 |
|
SU578297A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАННО-ЭЛЕКТРОДНОГО БЛОКА С ПОРИСТЫМ КАТОДОМ | 1987 |
|
RU2015207C1 |
ПЕНООБРАЗОВАТЕЛЬ ДЛЯ ФЛОТАЦИИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ | 2013 |
|
RU2535305C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ СКЕЛЕТНОГО КАТАЛИЗАТОРА ГИДРОДЕОКСИГЕНАЦИИ ПРОДУКТОВ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОЙ БИОМАССЫ | 2013 |
|
RU2534996C1 |
Способ получения диметилвинилкарбинола | 1975 |
|
SU573471A1 |
СПОСОБ ПРОИЗВОДСТВА ПЕРОКСИДА ВОДОРОДА И ХЛОРАТА | 2006 |
|
RU2375500C2 |
Электрохимический реактор и установка для электрохимического синтеза смеси оксидантов | 2019 |
|
RU2729184C1 |
Изобретение относится к способу получения спиртов, применяемых в парфюмерии, при получении полимеров, красителей и других продуктов промышленного органического синтеза. Способ заключается в электрокаталитическом гидрировании соответствующих кетонов и альдегидов в двукамерном электролизере с ионообменной диафрагмой, катодом, активированным скелетным никелевым катализатором, и анодом из платины или магнетита. В качестве католита используют водный раствор неокисляющейся соли или ее смеси с гидроксидом щелочного металла. Как правило, концентрация неокисляющейся соли -1-15 мас.%, гидроксида щелочного металла - не более 5 мас.%. Способ позволяет увеличить срок действия катализатора без уменьшения выхода по току и веществу. 1.з.п. ф-лы, 2 табл.
Томилов А.П | |||
и др | |||
Катодные синтезы органических препаратов | |||
- Алма-Ата: Наука, 1982, с | |||
Приспособление для плетения проволочного каркаса для железобетонных пустотелых камней | 1920 |
|
SU44A1 |
Томилов А.П | |||
и др | |||
Электрохимический синтез органических веществ | |||
- Л.: Химия, 1976, с | |||
Прибор, автоматически записывающий пройденный путь | 1920 |
|
SU110A1 |
US 5968335 А, 19.10.1999 | |||
УСТРОЙСТВО ДЛЯ ТЕПЛОМАССОЭНЕРГООБМЕНА | 2011 |
|
RU2462301C1 |
Способ получения паранитропропиофенона | 1961 |
|
SU145239A1 |
ХОЛОДИЛЬНОЕ УСТРОЙСТВО КОНТЕЙНЕРА | 2014 |
|
RU2632978C1 |
Авторы
Даты
2003-02-10—Публикация
2001-02-22—Подача