Изобретение относится к металлургии, в частности к производству хладостойких и жаропрочных сталей, и может быть использовано в энергомашиностроении для производства дисков и роторов газовых и паровых турбин.
Известна сталь, описанная в патенте Российской Федерации RU 2077602 С1, (опубликованном 20.04.1997), которая эксплуатируется при температурах от -70 до 300oС. Сталь содержит компоненты в следующем соотношении, мас.%:
Углерод - 0,04-0,09
Хром - 12,5-15,0
Никель - 4,0-6,5
Марганец - 0,1-1,0
Молибден - 2,5-3,53
Азот - 0,02-0,1
Кремний - 0,3-1,6
Ниобий - 0,02-0,4
Кобальт - 3,5-6,0
Церий - 0,001-0,05
Кальций - 0,001-0,05
Железо - Остальное
при этом выполняется соотношение:
Уровень хладостойкости известной стали недостаточно высокий.
Изобретение направлено на решение задачи повышения хладостойкости путем повышения ударной вязкости разрушения при температуре от -60 до 20oС, а также на повышение кратковременной, длительной и циклической прочности стали.
Для решения поставленной задачи предложенная хладостойкая сталь, содержащая углерод, хром, молибден, никель, кремний, марганец, ниобий и железо, дополнительно содержит ванадий при следующем соотношении компонентов, мас.%:
Углерод - 0,08-0,13
Хром - 11,0-13,0
Молибден - 1,5-1,75
Никель - 2,0-3,1
Ванадий - 0,2-0,35
Кремний - 0,3-0,1
Марганец - 0,05-0,1
Ниобий - 0,01-0,02
Церий - До 0,5
Железо - Остальное
при выполнении следующего соотношения:
(хром + молибден + ниобий + ванадий) - (1,5 никель + 30 углерод) = 4,2÷6,7.
Оптимальное содержание Si не превышает 0,05-0,07%. Содержание Si≅10[0] является технологически необходимым для связывания примесей О и S в округлые неметаллические включения в процессе кристаллизации стали.
Желаемое содержание Мл <0,05-0,10%, причем содержание Mn≅15[S] является технологически необходимым для связывания О и S в oкpyглые неметаллические включения в процессе кристаллизации стали. Церий вводится в случае выплавки в открытых агрегатах с целью регулирования распределения включений и связывания водорода.
Содержание S, О, Р не должно превышать 0,005% каждого, во избежание образования большего количества включений и накопления поверхностно-активных элементов на границах литого и границ аустенитного рекристаллизованного зерна.
Содержание остаточного алюминия не должно превышать 0,02%, чтобы обеспечить оптимальный состав оксидных включений.
Содержание Nb зависит от условий эксплуатации ротора или диска. При эксплуатации при температурах ниже 350oС и запуске из холодного состояния содержание не должно превышать 0,02%.
Химический состав стали двух плавок (базовой и опытной) приведен в табл. 1.
Сопоставление результатов показывает, что предложенная сталь обладает существенно лучшим сочетанием свойств, особенно при отрицательных температурах (температура охрупчивания ниже, чем у известной стали, и при температурах эксплуатации предел длительной прочности выше).
Использование предлагаемой стали существенно повышает изотропность свойств, надежность эксплуатации энергомашин их долговечность. Кроме того, предлагаемая сталь может быть выплавлена не только методами ЭШП и ВДП, но и в установках типа печь-ковш, т. к. ее структура определяется не столько условиями кристаллизации, сколько составом металла.
Механические свойства стали (после термообработки по режиму 1050oC, отпуск - 550 - 570oC) представлены в табл. 2.
В табл. 3 представлены данные по коэффициентам анизотропии (соотношение свойств вдоль и поперек волокна) для промышленных дисков из предлагаемой стали.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОПРОЧНАЯ СТАЛЬ | 2002 |
|
RU2237102C2 |
Хладостойкая высокопрочная сталь | 2020 |
|
RU2746598C1 |
СТАЛЬ | 1996 |
|
RU2100470C1 |
Высокопрочная конструкционная сталь | 2020 |
|
RU2737903C1 |
КОРРОЗИОННОСТОЙКАЯ МАРТЕНСИТНОСТАРЕЮЩАЯ СТАЛЬ | 2013 |
|
RU2532785C1 |
Экономнолегированная хладостойкая высокопрочная сталь | 2020 |
|
RU2746599C1 |
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ | 2022 |
|
RU2804233C1 |
СТАЛЬ | 1999 |
|
RU2196845C2 |
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ | 2019 |
|
RU2710760C1 |
ТОЛСТОЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ | 2017 |
|
RU2665854C1 |
Изобретение относится к металлургии, в частности к разработке составов хладостойких сталей, используемых в энергомашиностроении для изготовления дисков и роторов газовых и паровых турбин. Предложена хладостойкая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод - 0,08-0,13; хром - 11,0-13,0; молибден - 1,5-1,75; никель - 2,0-3,1; ванадий - 0,2-0,35; кремний - 0,03-0,1; марганец - 0,05-0,1; ниобий - 0,01-0,02; церий - до 0,5; железо - остальное, при выполнении следующего соотношения: (хром + молибден + ниобий + ванадий) - (1,5 никель + 30 углерод) =4,2-6,7. Техническим результатом изобретения является повышение хладостойкости путем повышения ударной вязкости разрушения при температуре от -60 до 20oC, а также повышение кратковременной, длительной и циклической прочности стали. 3 табл.
Хладостойкая сталь, содержащая углерод, хром, молибден, никель, кремний, марганец, ниобий и железо, отличающаяся тем, что она дополнительно содержит ванадий при следующем соотношении компонентов, маc.%:
Углерод - 0,08-0,13
Хром - 11,0-13,0
Молибден - 1,5-1,75
Никель - 2,0-3,1
Ванадий - 0,2-0,35
Кремний - 0,03-0,1
Марганец - 0,05-0,1
Ниобий - 0,01-0,02
Церий - До 0,5
Железо - Остальное
при выполнении следующего соотношения: (хром+молибден+ниобий+ванадий)-(1,5никель+30углерод)=4,2÷6,7.
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 1995 |
|
RU2077602C1 |
СТАЛЬ | 1991 |
|
RU2016127C1 |
СТАЛЬ | 1992 |
|
RU2009262C1 |
Литейная сталь | 1981 |
|
SU973662A1 |
US 4969963, 13.11.1990 | |||
US 4465525, 14.08.1984 | |||
US 5190722 А, 02.03.1993. |
Авторы
Даты
2003-02-10—Публикация
2000-07-27—Подача