Изобретение относится к металлургии и может быть использовано при выплавке металла с пониженным содержанием фосфора.
Известен способ дефосфорации легированных сталей, включающий обработку металлического расплава в инертной атмосфере с кислородным потенциалом не более 10-22 атм и азотным потенциалом 10-6 атм и флюсом, содержащим мас.%: металлический кальций 3-22; оксид кальция 19-22; фторид кальция 57-76 и последующее удаление флюса (см. А.С. СССР №1749247, С 21 С 7/064).
Недостатком известного способа является то, что при выплавке металла в результате взаимодействия флюса с находящимся в металле фосфором образуется шлак, содержащий труднорастворимый в воде трифосфат кальция (3СаО·Р2О5), что препятствует утилизации шлака и способствует загрязнению окружающей среды из-за складирования его в отвалы.
Наиболее близким аналогом к заявляемому объекту является способ дефосфорации металла, включающий расплавление шихты при температуре металла и последующую продувку металла через погружную фурму инертным газом, содержащим порошкообразный флюс с размером фракции 1-2 мм. При этом флюс представляет собой порошкообразную смесь, содержащую, в мас.%: известь - 65, железная руда - 25 и плавиковый шпат -10. Порошкообразную смесь вдувают в металл в количестве 2,5 - 3,0% от массы металла (см. Кудрин В.А., Парма В. Технология получения качественной стали. - М.: Металлургия, 1984, с.155-156).
Недостатком известного способа является то, что в процессе выплавки металла образуется шлак с труднорастворимым в воде трифосфатом кальция (3СаО·P2О5), который складируют в отвалы. Это приводит к загрязнению окружающей среды из-за невозможности утилизации шлака.
В основу изобретения поставлена задача разработать такой безотходный способ дефосфорации металла, который бы при сохранении высокой степени удаления фосфора из металла одновременно обеспечивал бы получение легкорастворимого в воде шлака, что позволит утилизировать его в виде фосфор-калийного удобрения для растений.
Поставленная задача решается тем, что в известном способе дефосфорации металла, включающем расплавление шихты и последующую продувку металла через погружную фурму инертным газом, содержащим порошкообразный флюс с размером фракций 1-2 мм, согласно изобретению в качестве флюса используют карбонат калия в количестве 50-60 кг/т металла.
Известно использование карбоната калия (К2СО3) вместо соды (Nа2СО3) в качестве составного элемента при производстве тугоплавкого стекла. Обычное стекло готовят из кварцевого песка, соды и известняка, которые сплавляют вместе (см. Глинка Н.А. Общая химия: Учебник - Л.: Химия, 1974, с.438, 510).
В заявляемом способе карбонат калия при введении в расплавленный металл проявляет новое техническое свойство, заключающееся в том, что при взаимодействии с расплавом металла он вначале диссоциирует с образованием диоксида углерода (СО2), который окисляет фосфор металла до пентаксида фосфора (Р2O5), способствующего образованию с оксидом калия (К2О) легкорастворимого в воде фосфата калия 2(К3РO4), который в расплавленном металле проявляет при этом одновременно свойства окислителя и флюсующего. Образующиеся в шлаке ионы К+ могут хорошо усваиваться растениями, а анионы ОН- безвредны для почвы, живых организмов и растений. Это позволяет одновременно с качественным удалением фосфора из расплавленного металла получить легкорастворимый шлак, используемый в качестве фосфор-калийного удобрения.
На основании вышеизложенного можно сделать вывод, что для специалиста заявляемый способ дефосфорации металла не следует явным образом из известного уровня техники, а следовательно, соответствует условию патентоспособности “изобретательский уровень”.
Способ дефосфорации металла осуществляют следующим образом. Карбонат калия (К2СО3) измельчают до крупности фракции 1-2 мм, хорошо прокаливают в термической печи при температуре 300-400°С и засыпают в устройство для продувки металла инертным газом, размещенное на весовой площадке. Затем расплавляют шихту и продувают металл при температуре 1540-1560°С через специальную погружную фурму, размещенную в ковше под углом 30-35 градусов на глубину 200-300 мм, инертным газом, содержащим порошкообразный карбонат калия. Время продувки 60 т ковша составляет 8-12 мин. При этом на тонну металла вдувают 50-60 кг порошкообразного карбоната калия. При этом между металлом и флюсом происходят физико-химические взаимодействия, приводящие к дефосфорации металла. Образовавшийся шлак представляет собой комплексное фосфорно-калийное удобрение, которое используют для усиления роста растений.
Заявляемое количество флюса позволяет одновременно осуществлять качественную дефосфорацию металла и получать комплексное фосфор-калийное удобрение, хорошо растворимое в воде.
Введение в металл карбоната калия менее 50 кг/т приводит к недостаточной дефосфорации металла и образованию малого количества фосфор-калийного удобрения, хорошо растворимого в воде.
Введение в металл карбоната калия более 60 кг/т не обеспечивает полного взаимодействия его с фосфором металла, в результате чего в образовавшемся шлаке присутствует непрореагировавший карбонат калия, что снижает растворимость в воде полученного удобрения.
Для обоснования преимуществ заявляемого способа по сравнению с прототипом были проведены опытные продувки чугуна в 60 т ковше при температуре 1550°С. Результаты продувок приведены в таблице. Количество флюса, вводимого в металл, в составах №1-3 взято в заявляемых пределах, в составах №4-5 количество используемого флюса выходит за заявляемые пределы, количество флюса в составах №6-7 взято по прототипу.
Результаты испытаний показали, что заявляемый способ по сравнению с прототипом позволяет при сохранении качественной дефосфорации металла наравне с прототипом (составы №6-7) еще может обеспечить получение легкорастворимого в воде шлака, который может быть утилизирован путем использования его в качестве комплексного фосфор-калийного удобрения. Таким образом, заявляемый способ дефосфорации металла соответствует условию патентоспособности “промышленная применимость”, так как он работоспособен, устраняет недостатки прототипа и может быть использован в промышленных условиях.
название | год | авторы | номер документа |
---|---|---|---|
Способ выплавки стали в кислородном конвертере | 2015 |
|
RU2608008C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ | 2008 |
|
RU2387717C2 |
СПОСОБ ПРОИЗВОДСТВА СТАЛИ | 2000 |
|
RU2197537C2 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В ЭЛЕКТРОДУГОВОЙ ПЕЧИ | 2016 |
|
RU2632736C1 |
СПОСОБ ВЫПЛАВКИ ЧУГУНА | 2009 |
|
RU2409681C1 |
Способ выплавки стали в дуговой электросталеплавильной печи | 2021 |
|
RU2757511C1 |
Способ выплавки стали в агрегате печь-ковш | 2016 |
|
RU2649476C2 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ | 1999 |
|
RU2159289C1 |
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ | 2005 |
|
RU2288958C1 |
Способ переработки марганецсодержащего сырья | 2018 |
|
RU2697681C1 |
Изобретение относится к области черной металлургии и может быть использовано при выплавке металла с пониженным содержанием фосфора. Технический результат - разработка безотходного способа дефосфорации металла, который обеспечивает высокую степень удаления фосфора из металла и получение легкорастворимого в воде шлака, утилизируемого в виде фосфор-калийного удобрения. Способ дефосфорации металла включает расплавление шихты и последующую продувку металла через погружную фурму инертным газом, содержащим порошкообразный флюс с размером фракций 1-2 мм. В качестве порошкообразного флюса используют карбонат калия в количестве 50-60 кг/т металла. 1 табл.
Способ дефосфорации металла, включающий расплавление шихты и последующую продувку металла через погружную фурму инертным газом, содержащим порошкообразный флюс с размером фракций 1-2 мм, отличающийся тем, что в качестве порошкообразного флюса используют карбонат калия в количестве 50-60 кг/т металла.
КУДРИН В.А | |||
и др | |||
Технология получения качественной стали | |||
- М.: Металлургия, 1984, с.155 и 156 | |||
СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННОЙ ПОВЕРХНОСТИ | 1994 |
|
RU2078260C1 |
Способ буквенно-цифровой регистрации информации | 1973 |
|
SU492896A1 |
Способ дефосфорации легированных сталей и флюс для его осуществления | 1990 |
|
SU1749247A1 |
СПОСОБ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ СТАЛИ | 2000 |
|
RU2156812C1 |
Авторы
Даты
2004-05-20—Публикация
2002-10-17—Подача