СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ Российский патент 2004 года по МПК B01J20/10 B01J20/04 B01J20/08 

Описание патента на изобретение RU2230609C1

Изобретение относится к области прикладной радиохимии и может быть использовано для иммобилизации радиоактивных отходов из растворов, для обработки территорий и водоемов, подвергшихся загрязнению радионуклидами.

Основной проблемой, связанной с применением сорбционного способа иммобилизации жидких радиоактивных отходов, является отсутствие эффективного материала-сорбента, способного необратимо фиксировать радионуклиды, что служило бы гарантией его последующего безопасного хранения и захоронения.

В настоящее время в качестве сорбентов радионуклидов используют органические и неорганические материалы природного и искусственного происхождения.

Известен искусственный органический сорбент - сильнокислый катионит КУ-2-8 [1], который обладает достаточно высокой обменной емкостью 1,65 мг-экв/мл, хорошими фильтрующими и кинетическими свойствами, химической устойчивостью в концентрированных растворах кислот и щелочей, достаточно высокими коэффициентами очистки от радионуклидов.

Сорбция на КУ-2-8 позволяет удалить из отходов все радионуклиды, находящиеся в ионной форме.

Недостатком сорбента КУ-2-8 является невозможность извлечения из жидких радиоактивных отходов радионуклидов, находящихся в молекулярной и коллоидной форме.

Недостатком сорбента КУ-2-8 также является обратимость процессов сорбции, что не позволяет применять его для иммобилизации радионуклидов в водоносных слоях.

Известен искусственный неорганический сорбент - двуокись циркония (ZrO2). Двуокись циркония обладает сорбционными и ионообменными свойствами, которые зависят от способа получения и метода гранулирования. Обменная емкость двуокиси циркония находится в пределах 0,8-1,0 мг-экв/г [2]. Сорбент - двуокись циркония - ведет себя в кислых растворах как анионит, а в щелочных - как катионит. Двуокись циркония во многом напоминает органические ионообменные сорбенты. Поэтому двуокись циркония обладает недостатками органических искусственных сорбентов.

В качестве наиболее близкого аналога (прототипа) заявленного сорбента выбраны природные неорганические сорбенты - цеолиты [3], которые наиболее близки к предлагаемому по физическим, сорбционным свойствам.

Состав цеолитов, в общем виде, обычно выражается формулой

Mx/k[(AlO2)x(SiO2)y]·nH2O,

где М - катион с валентностью k; n - число молекул воды; x - в зависимости от структуры принимает значение от 1 до 5.

Прототип - клиноптилолит - содержит следующие ингредиенты, мас.%:

Диоксид кремния 69,2

Оксид кальция 1,0

Оксид алюминия 10,6

Оксид магния 0,1

Цеолиты селективны к крупным катионам. Так, например, для такого цеолита как клиноптилолит, полный ряд селективности выглядит следующим образом: Cs>Rb>К>NH4>Pb>Ag>Ва>Na>Sr>Ca>Li>Cd>Cu>Zn [2].

Полная обменная емкость (ПОЕ) цеолитов имеет следующие значения, мг-экв/г: клиноптилолита - 2,2; эрионита - 3,1; шабазита - 3,9 [4].

Недостатком прототипа является отсутствие необратимой фиксации радионуклидов в отработанном сорбенте, малая распространенность цеолитов в природе в чистом виде, значительная стоимость (150$ за 1 тонну).

Задачей, на решение которой направлено изобретение, является создание материала с хорошими сорбционными свойствами, необратимо фиксирующего радионуклиды, дешевого и доступного.

Указанная задача решается тем, что сорбент на основе силикатов кальция с добавлением оксида кальция и оксида магния согласно изобретению содержит указанные ингредиенты в следующем соотношении, мас.%: диоксид кремния – 25...26; оксид кальция - 45...52; оксид алюминия - 5...7; оксид магния - 13...15.

Созданный сорбент на основе силикатов кальция с добавлением оксида алюминия и оксида магния, взятых в указанных количествах, - совершенно новый вид искусственных неорганических сорбентов. Использование при создании сорбента диоксида кремния, оксида кальция, оксида алюминия, оксида магния в указанных выше количествах позволяет получить материал с хорошими сорбционными свойствами, о чем свидетельствует полная обменная емкость и коэффициент распределения. Предлагаемый сорбент на основе силикатов кальция с добавлением оксида алюминия и оксида магния необратимо фиксирует радионуклиды, о чем свидетельствует низкая степень выщелачивания последних из отработанного сорбента. Сорбент приобретает способность необратимо фиксировать радионуклиды благодаря использованию для его приготовления оксида кальция, диоксида кремния, оксида магния и оксида алюминия в новых по отношению к прототипу соотношениях, указанных выше. В таблице для сравнения представлены физико-химические свойства сорбента на основе силикатов кальция с добавлением оксида алюминия, оксида марганца и сорбента-прототипа.

Создание сорбента на основе силикатов кальция с добавлением оксида алюминия и оксида магния производится методом плавления исходных компонентов. Технология производства сорбента рассчитана на получение саморассыпающегося материала. Фракционный состав полученного сорбента в пределах 0,4-0,1 мм.

Минералогический состав полученного сорбента определяется его химическим составом и находится в соответствии ряда оксидных систем. Основными минералами сорбента являются силикаты: двухкальциевый силикат 2CaO·SiO2; трехкальциевый силикат 3CaO·SiO2; мервинит 3СаО·MgO·SiO2, а также периклаз MgO и оксид алюминия Al2O3, присутствующий в виде шпинели MgO·Al2O3.

Примером конкретного выполнения сорбента на основе силикатов кальция с добавлением оксида алюминия и оксида магния может служить саморассыпающийся феррохромовый шлак производства ОАО "ЧЭМК", схожий с предлагаемым по своему составу и способу производства.

Положительный эффект изобретения в сравнении с ближайшим аналогом (клиноптилолитом) заключается в следующем: более высокая полная обменная емкость сорбента на основе силикатов кальция с добавлением оксида алюминия и оксида магния по сравнению с аналогом, необратимость фиксирования радионуклидов.

Предлагаемый сорбент доступен и дешев (1$ за 1 тонну). Внедрение изобретения позволит улучшить экологическую обстановку территорий и водоемов, подвергшихся загрязнению радионуклидами.

Предлагаемый сорбент на основе силикатов кальция с добавлением оксида алюминия и оксида магния может быть использован в качестве материала для отсыпки дна водоемов, загрязненных радионуклидами. Такой способ иммобилизации радиоактивных отходов позволит предотвратить миграцию радионуклидов с подземными водами. Предлагаемый сорбент может быть использован для иммобилизации радионуклидов в поверхностном слое почв, предотвращая миграцию его с поверхностными водами.

Источники информации

1. Салдадзе К.М., Кельман Б.Я. Химические активные полимеры. - М.: Химия, 1969, с.188-193.

2. Кузнецов Ю.В., Щебетковский В.И., Трусов А.Г. Основы очистки воды от радиоактивных загрязнений. - М.: Атомиздат, 1974, 360 с.

3. Овчаренко Г.И., Свиридов В.Л. Цеолиты в строительных материалах. - Барнаул: Изд-во АлтГТУ, - 1995, 102 с.

4. Леонов С.Б., Мартынова Т.М., Мерняк А.С., Салов В.М. Очистка природных сточных вод минеральными цеолитами. - Иркутск: Изд-во Иркут. ун-та, 1994, 56 с.

Похожие патенты RU2230609C1

название год авторы номер документа
КОМПОЗИЦИОННЫЙ СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ 2011
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Михайлов Геннадий Георгиевич
RU2481153C2
КОМПОЗИЦИОННЫЙ ГРАНУЛИРОВАННЫЙ СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ 2014
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Михайлов Геннадий Георгиевич
  • Скотников Вадим Анатольевич
  • Беркович Лазер Исаакович
RU2575044C1
Состав и способ получения композиционного гранулированного сорбента на основе алюмосиликатов кальция и магния 2021
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Скотников Вадим Анатольевич
RU2805663C2
Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике 2017
  • Папынов Евгений Константинович
  • Шичалин Олег Олегович
  • Тананаев Иван Гундаревич
  • Авраменко Валентин Александрович
  • Сергиенко Валентин Иванович
RU2669973C1
Способ получения барийсодержащего алюмосиликатного сорбента с использованием растительного сырья 2022
  • Ярусова Софья Борисовна
  • Панасенко Александр Евгеньевич
  • Земнухова Людмила Алексеевна
  • Гордиенко Павел Сергеевич
RU2787778C1
Композитный гранулированный сорбент 2018
  • Ульрих Дмитрий Владимирович
RU2682586C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ РАСТВОРОВ ОТ РАДИОНУКЛИДОВ СТРОНЦИЯ И ЦЕЗИЯ 1997
  • Авраменко В.А.
  • Глущенко В.Ю.
  • Железнов В.В.
  • Сергиенко В.И.
  • Черных В.В.
RU2118856C1
СПОСОБ ОЧИСТКИ НИЗКОАКТИВНЫХ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ РАДИОНУКЛИДОВ 2000
  • Пензин Р.А.
  • Гелис В.М.
  • Трусов Л.И.
  • Милютин В.В.
  • Беляков Е.А.
  • Тарасов В.П.
  • Охрименко Е.А.
  • Булыгин В.К.
RU2172032C1
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКОГО ФЕРРОЦИАНИДНОГО СОРБЕНТА (ВАРИАНТЫ) 2019
  • Воронина Анна Владимировна
  • Ноговицына Елена Викторовна
  • Семенищев Владимир Сергеевич
  • Блинова Марина Олеговна
RU2746194C2
Сорбционный материал для селективного извлечения радионуклидов стронция из сложных по ионному составу растворов и способ извлечения радионуклидов стронция с его помощью 2018
  • Гордиенко Павел Сергеевич
  • Шабалин Илья Александрович
  • Ярусова Софья Борисовна
  • Буланова Светлана Борисовна
RU2680964C1

Реферат патента 2004 года СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ

Изобретение относится к области прикладной радиохимии и может быть использовано для иммобилизации радиоактивных отходов из растворов, для обработки территорий и водоемов, подвергшихся загрязнению радионуклидами. Согласно изобретению сорбент на основе силикатов кальция содержит следующие ингредиенты в следующем соотношении, мас.%: диоксид кремния - 25...26; оксид кальция - 45...52; оксид алюминия - 5...7; оксид магния - 13...15. Изобретение позволяет создать сорбент, необратимо поглощающий радионуклиды. 1 табл.

Формула изобретения RU 2 230 609 C1

Сорбент на основе силикатов кальция, содержащий диоксид кремния, оксид кальция, оксид алюминия, оксид магния, отличающийся тем, что указанные компоненты присутствуют в следующих соотношениях, мас.%:

Диоксид кремния 25-26

Оксид кальция 45-52

Оксид алюминия 5-7

Оксид магния 13-15

Документы, цитированные в отчете о поиске Патент 2004 года RU2230609C1

Способ получения сурьмянокремневого катионита 1980
  • Беляков Владимир Николаевич
  • Пензин Роман Андреевич
  • Коваленко Маргарита Александровна
  • Стрелко Владимир Васильевич
  • Борисов Виктор Пантелеймонович
SU929209A1
Способ получения фильтрующего материала для очистки воды 1983
  • Николадзе Георгий Ильич
  • Гоголи Автандил Акакиевич
  • Кочиашвили Григорий Тошиаевич
  • Назаров Алексей Иванович
  • Бицадзе Нуну Амбросиевна
SU1178478A1
Способ получения активированного сорбента 1980
  • Мдивнишвили Отар Михайлович
  • Уридия Ламара Ясоновна
  • Тивадзе Алексей Арчилович
SU947044A1
Сорбент для очистки сточных вод 1990
  • Челищев Николай Федорович
  • Карасева Валентина Николаевна
  • Богомолов Олег Николаевич
  • Селенов Вадим Георгиевич
  • Михайлов Александр Викторович
  • Топчиев Дмитрий Александрович
  • Мурзабекова Тамара Гаджиевна
  • Голубцов Итэн Вячеславович
  • Виноградова Ирина Николаевна
SU1726008A1
"Способ получения неорганического сорбента "Селекс - КМ" 1991
  • Пензин Роман Андреевич
  • Гелис Владимир Меерович
  • Олонцев Евгений Федорович
  • Калинин Николай Федорович
  • Копылов Вячеслав Егорович
  • Милютин Виталий Витальевич
SU1771426A3

RU 2 230 609 C1

Авторы

Пашкеев И.Ю.

Семенова И.А.

Михайлов Г.Г.

Дзекун Е.Г.

Шмыга В.Б.

Даты

2004-06-20Публикация

2003-04-21Подача