Изобретение относится к области металлургии и, в частности, к получению гранул и порошков редких, радиоактивных металлов и их сплавов.
Существует ряд способов получения металлических гранул и порошков, основой которых являются расплавление металла в печи, слив струи расплава через фильеру, диспергирование на капли, охлаждение и кристаллизация капель. Недостатками этих способов является необходимость применения в качестве исходного материала чистых металлов или сплавов, полученных из чистых компонентов, что значительно удорожает стоимость конечных порошков и гранул.
Наиболее близким по технической сущности и достигаемому результату является способ получения гранул (см. Э.Г.Раков и др. Процессы и аппараты производств радиоактивных и редких металлов. М.: Металлургия, 1993, с. 352-357), включающий получение в тигле плавильной печи металлического расплава путем восстановления химических соединений металлом-восстановителем. Недостатком данного способа является то, что полученные гранулы распределены в массе шлака и для их извлечения шлак необходимо измельчать и выщелачивать, что значительно усложняет и удорожает процесс. Кроме того, данный способ не позволяет получать гранулы заданного гранулометрического состава.
Техническим результатом предлагаемого изобретения является сокращение числа технологических операций и энергозатрат при производстве гранул и порошков металлов и их сплавов за счет использования в качестве исходного сырья, из которого получают металлический расплав, химических соединений, но не чистых металлов, повышение качества получаемых продуктов, сокращение количества образующихся отходов и увеличение срока службы оборудования.
Технический результат достигается тем, что в способе получения гранул и порошков редких, радиоактивных металлов и их сплавов, включающем получение из исходной шихты химических соединений редких, радиоактивных металлов в тигле плавильной печи металлического расплава путем восстановления химических соединений металлом-восстановителем. Из полученного металлического расплава удаляют или кристаллизуют шлаковый расплав, после чего полученный расплав сливают из тигля для диспергирования струи на капли, которые охлаждают и кристаллизуют.
Легирующие элементы вводят в исходную шихту в виде химических соединений, металлов и сплавов, которые взаимодействуют с металлом-восстановителем с образованием флюса.
Получение металлического расплава осуществляют в герметичной индукционной печи с медным разрезным водоохлаждаемым тиглем, прозрачным для электромагнитного поля с перемещающимся внутри тигля медным водоохлаждаемым поддоном, а его слив - через сливные устройства, расположенные в верхней части стенки тигля и поддоне(патент РФ №2177132).
Металлический расплав сливают через вмонтированный в поддон индукционный плавильный узел с медным разрезным водоохлаждаемым тиглем, прозрачным для электромагнитного поля, и установленной внутри тигля фильерой с калиброванными отверстиями.
Шлаковый расплав удаляют при перемещении поддона вверх по сливному желобу, расположенному в верхней части стенки тигля.
Протекающие с выделением большого количества тепла металлотермические реакции позволяют исключить или значительно сократить энергозатраты на плавление. Легирующие элементы также целесообразно вводить в исходную шихту в виде более дешевых, чем чистые металлы, химических соединений, при условии, что они также восстанавливаются металлом-восстановителем. Наибольший эффект достигается тогда, когда образующийся при восстановлении легирующих элементов шлак является флюсом, снижающим температуру плавления шлака или улучшающим другие физико-химические свойства (вязкость, поверхностное натяжение и т.п.), обеспечивающие полноту разделения металлического и шлакового расплавов.
Удаление или кристаллизация шлака перед сливом металлического расплава исключают попадание шлакового расплава в сливаемый металлический расплав и не загрязняют последний.
Применение индукционной печи с холодным тиглем для металлотермической реакции обусловлено длительным сроком службы печей такого типа (до 20 лет) и тем, что выплавляемые в них металлы и сплавы не загрязняются материалом тигля. Применение сливного устройства для расплава в виде индукционного плавильного узла с холодным тиглем также обеспечивает длительный срок его службы, а также, в силу практической безынерционности индукционного нагрева, позволяет оперативно регулировать температуру фильеры и сливаемого расплава в заданном диапазоне.
Экспериментальную проверку предложенного способа проводили в вакуумной индукционной печи с холодным тиглем диаметром 200 мм, медным водоохлаждаемым поддоном, который перемещается внутри тигля, и двумя сливными устройствами: в виде желоба - в верхней части стенки тигля, а также в поддоне в виде плавильного узла с холодным тиглем диаметром 40 мм со вставляемой в этот тигель фильерой с отверстиями различного диаметра.
Пример 1. В холодный тигель загружали порцию шихты, состоящей из тетрафторида урана и стружки металлического кальция, взятого с избытком 10 мас.% от стехиометрически необходимого, печь герметизировали и инициировали металлотермическую реакцию. После прохождения реакции, продукты плавки охлаждали до 1200°С, что приводило к кристаллизации шлака - фторида кальция (tпл.-1418°С), но не металлического урана (tпл.-1136°С). Температуру уранового расплава поддерживали на уровне 1200°С подачей энергии на индуктор холодного тигля. Далее подавали напряжение на индуктор сливного устройства в поддоне, разогревая фильеру и расплавляя пробку из закристаллизовавшегося уранового расплава. Урановый расплав стекал через фильеру диаметром 3 мм, попадал на вращающийся охлаждаемый диск и кристаллизовался в виде гранул.
Пример 2. Исходная шихта состояла из трифторида неодима, трихлорида железа и порошка бора, взятых в соотношении, необходимом для получения сплава Nd-Fe-B, и стружки металлического кальция, взятой с избытком 10 мас.% сверх стехиометрии для восстановления фторида неодима и хлорида железа до металлов. Введение в шихту железа в виде трихлорида железа приводило к образованию в процессе металлотермической реакции флюса - СаСl2, обеспечивающего получение легкоплавкого шлака при смешении с фторидом кальция, образующимся при восстановлении фторида неодима. После прохождения металлотермической реакции поддон перемещали вверх до полного слива шлакового расплава по желобу. Поддон возвращали в исходное положение, поддерживая индукционными токами температуру расплава неодим-железо-бор на уровне 1450°С. Далее подавали напряжение на индуктор сливного устройства в поддоне, разогревая фильеру и расплавляя пробку из закристаллизовавшегося уранового расплава. Расплав неодим-железо-бора стекал через фильеру диаметром 1 мм, попадал на вращающийся охлаждаемый диск и кристаллизовался в виде мелкодисперсного порошка.
Пример 3. Исходная шихта состояла из кристаллических порошков тетрафторида циркония и порошка металлического ниобия, взятых из расчета получения сплава цирконий - 2,5 мас.% ниобия, и стружки металлического кальция, взятой с избытком 5 мас.% сверх стехиометрии для восстановления фторида циркония до металла. Шихту нагревали в атмосфере аргона до 300°С и инициировали металлотермическую реакцию. Температура продуктов плавки составила 2000°С. После прохождения металлотермической реакции поддон перемещали вверх до полного слива шлакового расплава по желобу. Поддон возвращали в исходное положение, поддерживая индукционными токами температуру цирконий-ниобиевого расплава на уровне 1950°С. Далее подавали напряжение на индуктор сливного устройства в поддоне, разогревая фильеру и расплавляя пробку из закристаллизовавшегося уранового расплава. Цирконий-ниобиевый расплав стекал через фильеру диаметром 1 мм, попадал на вращающийся охлаждаемый диск и кристаллизовался в виде мелкодисперсного порошка.
Таким образом, приведенные примеры доказывают эффективность предложенного способа для получения гранул и порошков редких радиоактивных металлов и их сплавов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ОТХОДОВ, ОТРАБОТАВШИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ | 2000 |
|
RU2172787C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ И ПОРОШКОВ ДИОКСИДА УРАНА | 2004 |
|
RU2259903C1 |
ПЛАВИЛЬНАЯ ПЕЧЬ | 2000 |
|
RU2177132C1 |
СПОСОБ ПЕРЕРАБОТКИ РАДИОКТИВНЫХ ОТХОДОВ, ОБРАЗУЮЩИХСЯ В ПРОЦЕССЕ РАЗРУШЕНИЯ ОБЛУЧЕННЫХ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ, МЕТОДОМ ИНДУКЦИОННОГО ШЛАКОВОГО ПЕРЕПЛАВА В ХОЛОДНОМ ТИГЛЕ | 2018 |
|
RU2765028C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОВ И СПЛАВОВ | 2001 |
|
RU2191834C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ | 2001 |
|
RU2191838C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОВ И СПЛАВОВ | 1996 |
|
RU2095440C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ КЕРАМИЧЕСКОГО ЯДЕРНОГО ТОПЛИВА ИЗ ПАКЕТОВ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ | 2001 |
|
RU2200766C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ КЕРАМИЧЕСКОГО ЯДЕРНОГО ТОПЛИВА ИЗ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ И ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК | 2001 |
|
RU2194783C1 |
СПОСОБ УТИЛИЗАЦИИ ОТХОДОВ, СОДЕРЖАЩИХ ТЯЖЕЛЫЕ МЕТАЛЛЫ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2017841C1 |
Изобретение относится к металлургии, в частности, к получению гранул и порошков редких, радиоактивных металлов и их сплавов. В предложенном способе, включающем получение из исходной шихты химических соединений редких, радиоактивных металлов в тигле плавильной печи металлического расплава путем восстановления химических соединений металлом-восстановителем, согласно изобретению из полученного металлического расплава удаляют или кристаллизуют шлаковый расплав, после чего полученный расплав сливают из тигля для диспергирования струи на капли, которые охлаждают и кристаллизуют, причем при получении гранул и порошков сплавов в исходную шихту вводят легирующие элементы в виде химических соединений, металлов, сплавов, взаимодействующих с металлом-восстановителем с образованием флюса. Обеспечивается повышение качества получаемых продуктов, сокращение количества отходов и увеличение срока службы оборудования. 5 з.п. ф-лы.
Э.Г.РАКОВ и др | |||
Процессы и аппараты производств радиоактивных и редких металлов | |||
- М.: Металлургия, 1993, с.352-357 | |||
Устройство для получения гранул из расплава | 1983 |
|
SU1304739A3 |
RU 21777132 C1, 20.12.2001 | |||
US 5234491 А, 10.08.1993. |
Авторы
Даты
2004-06-27—Публикация
2002-10-02—Подача