СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ Российский патент 2004 года по МПК C25D11/06 C25D11/18 

Описание патента на изобретение RU2237758C1

Изобретение относится к области электрохимического оксидирования алюминия и его сплавов и может найти применение в приборостроительной и радиоэлектронной промышленности, например, при изготовлении изоляционных деталей приборов контроля и регулирования температуры.

Известен способ получения покрытий в комбинированном электролите на основе борной кислоты и едкого калия для повышения износостойкости, поверхностной твердости и модуля нормальной упругости изделий из алюминия и его сплавов [1].

Однако он не обеспечивает высоких значений пробойного напряжения получаемых покрытий.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения термостойких изоляционных пленок на алюминии и его сплавах, включающий двухэтапное анодирование в кислотных электролитах [2].

Недостатком данного способа является получение тонких покрытий, которые легко повреждаются при проведении сборочных работ готового изделия, что приводит к серьезному снижению термостойкости и изоляционных свойств покрытия. Термостойкость покрытий, полученных данным способом, представляется как способность покрытия выдерживать лишь кратковременные температурные перегрузки. Кроме того, способ требует предварительного обезжиривания поверхности путем кипячения в хлороформе в течение 15-20 мин с последующей промывкой в дистиллированной воде, что усложняет технологический процесс.

Задачей изобретения является увеличение толщины покрытия, повышение его пробойного напряжения и постоянное сохранение этого свойства при температуре до 200°С, а также уменьшение вероятности повреждения изделий с покрытиями при сборке, транспортировке и во время эксплуатации.

Поставленная задача достигается тем, что в известном способе, включающем обработку изделий, согласно изобретению обработку изделий ведут в три этапа, включающих формирование покрытия в электролите, содержащем 2-6 г/л гидроокиси калия и 10-30 г/л жидкого стекла при напряжении на детали от 400 В и начальной плотности переменного тока 20-25 А/дм2 с последующим понижением ее на 5% каждые 10 мин до толщины не менее 100 мкм, термическую обработку изделия с покрытием при температуре 200-250°С в течение 1-1,5 ч и пропитку в суспензии фторопласта с последующей сушкой при температуре 100-150°С.

Способ осуществляют следующим способом.

Изделие из алюминиевого сплава помещают в ванну с электролитом, содержащим 2-6 г/л гидроокиси калия и 10-30 г/л жидкого стекла. Затем через специальный источник питания осуществляют подключение тока к электродам, одним из которых является изделие, второй, состоящий из двух частей, располагается по краям ванны, симметрично относительно изделия, при этом плотность переменного тока составляет 20...25 А/дм2, а напряжение на детали составляет не менее 400 В, что приводит к образованию на поверхности детали микроплазменных разрядов. Плотность тока поддерживается на начальном уровне в течение 10 мин, по окончании которых ее снижают на 5% и поддерживают на этом уровне следующие 10 мин до повторного снижения на 5%. Ступенчатое регулирование плотности тока продолжается на протяжении всего процесса оксидирования. Такое регулирование позволяет вести процесс на предельно допустимой скорости формирования покрытия, при этом избегая перехода микродугового режима в дуговой, что неминуемо происходит с ростом толщины покрытия при высокой плотности тока. В результате на поверхности детали образуется пористый слой оксидной керамики.

Процесс ведут до образования на поверхности изделия покрытия толщиной не менее 100 мкм. После чего изделие извлекают из ванны и просушивают, помещая в печь и нагревая до температуры 200-250°С, что позволяет освободить поры покрытия от влаги. Затем производят заполнение пор покрытия путем погружения изделия в емкость, заполненную суспензией фторопласта Ф-4Д. Температура обработки составляет 30-50°С, время выдержки 15-30 мин. Высушивают покрытие при температуре 100-150°С. Результатом последней операции является устранение сквозной пористости покрытия, что значительно повышает пробойное напряжение покрытия (см. таблицу).

Проверку пробойного напряжения покрытий проводили на установке УПИ-3 при частоте переменного тока 50 Гц и времени нарастания напряжения 10 с. Температурный предел (термостойкость), при котором происходит образование трещин на покрытии, оценивали по локальному снижению напряжения пробоя на 200-300 В после выдержки образцов в печи не менее 1 ч.

Предлагаемый способ позволяет увеличить толщину покрытия в 5-7 раз, повысить пробойное напряжение покрытия на 20-50%, постоянно сохранять это свойство при температуре до 240°С, за счет большей толщины снизить вероятность повреждения изделий с покрытиями при сборке, транспортировке и во время эксплуатации, а также упростить утилизацию отработанного электролита за счет использования менее агрессивных компонентов электролита.

Источники информации

1. Патент РФ №2136788, С 25 D 11/08.

2. АС СССР 1608253, С 25 D 11/14 – прототип.

Похожие патенты RU2237758C1

название год авторы номер документа
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗНОШЕННЫХ ПРИВАЛОЧНЫХ ПЛОСКОСТЕЙ ГОЛОВОК БЛОКА ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2004
  • Новиков Александр Николаевич
  • Жуков Вячеслав Васильевич
  • Пронин Вячеслав Викторович
RU2274537C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2006
  • Чуфистов Олег Евгеньевич
  • Дёмин Станислав Борисович
  • Чуфистов Евгений Алексеевич
RU2339745C2
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2007
  • Чуфистов Олег Евгеньевич
  • Борисков Дмитрий Евгеньевич
  • Чуфистов Евгений Алексеевич
RU2354758C2
КЕРАМИЧЕСКОЕ ПОКРЫТИЕ, ПОДОШВА УТЮГА И СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИЗДЕЛИЯХ ИЗ АЛЮМИНИЯ ИЛИ ЕГО СПЛАВОВ 2000
  • Мамаев А.И.
  • Бутягин П.И.
  • Рамазанова Ж.М.
  • Мирошников Д.Г.
  • Чеканова Ю.Ю.
RU2213166C2
СПОСОБ ИЗГОТОВЛЕНИЯ АНОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА СО ЩЕЛОЧНЫМ ЭЛЕКТРОЛИТОМ 2005
  • Быстров Юрий Александрович
  • Кудрявцев Николай Анатольевич
  • Краснобрыжий Андрей Васильевич
  • Русин Алексей Иванович
  • Никольский Вадим Вадимович
  • Джуринский Дмитрий Викторович
RU2291521C2
ЭЛЕКТРОЛИТ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ НА ВЕНТИЛЬНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И ПОКРЫТИЕ, ПОЛУЧЕННОЕ ТАКИМ СПОСОБОМ 2016
  • Бутягин Павел Игоревич
  • Арбузова Светлана Сергеевна
  • Большанин Антон Владимирович
RU2671311C2
СПОСОБ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА АЛЮМИНИЙ И ЕГО СПЛАВЫ 2004
  • Руднев В.С.
  • Яровая Т.П.
  • Недозоров П.М.
  • Богута Д.Л.
RU2263164C1
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ МАГНИЯ И СПЛАВОВ НА ЕГО ОСНОВЕ 2004
  • Хохлов В.В.
  • Вавилкин Н.М.
  • Клевцов А.Г.
  • Баутин В.А.
  • Ракоч А.Г.
  • Кутырев А.Е.
  • Магурова Ю.В.
RU2260078C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНЫХ КАТАЛИТИЧЕСКИ АКТИВНЫХ СЛОЕВ И КАТАЛИТИЧЕСКИ АКТИВНЫЙ МАТЕРИАЛ, ПОЛУЧЕННЫЙ ДАННЫМ СПОСОБОМ 1998
  • Мамаев А.И.
  • Бутягин П.И.
RU2152255C1
Способ получения защитных покрытий на магнийсодержащих сплавах алюминия 2020
  • Егоркин Владимир Сергеевич
  • Вялый Игорь Евгеньевич
  • Цветников Александр Константинович
  • Синебрюхов Сергей Леонидович
  • Гнеденков Сергей Васильевич
RU2734426C1

Реферат патента 2004 года СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение относится к области электрохимического оксидирования алюминия и его сплавов и может найти применение в приборостроительной и радиоэлектронной промышленности, например, при изготовлении изоляционных деталей приборов контроля и регулирования температуры. Способ включает обработку изделий в три этапа, включающих формирование покрытия в электролите, содержащем 2-6 г/л гидроокиси калия и 10-30 г/л жидкого стекла при напряжении на детали от 400 В и начальной плотности переменного тока 20-25 А/дм2 с последующим понижением ее на 5% каждые 10 мин до толщины не менее 100 мкм, термическую обработку изделия с покрытием при температуре 200-250°С в течение 1-1,5 ч и пропитку в суспензии фторопласта с последующей сушкой при температуре 100-150°С. Способ позволяет увеличить толщину покрытия в 5-7 раз, повысить пробойное напряжение покрытия на 20-50%, постоянно сохранять это свойство при температуре до 240°С, за счет большей толщины снизить вероятность повреждения изделий с покрытиями при сборке, транспортировке и во время эксплуатации, а также упростить утилизацию отработанного электролита за счет использования менее агрессивных компонентов электролита. 1 табл.

Формула изобретения RU 2 237 758 C1

Способ получения термостойких изоляционных покрытий на изделиях из алюминиевых сплавов, включающий обработку изделий, отличающийся тем, что обработку изделий ведут в три этапа, включающих формирование покрытия в электролите, содержащем 2-6 г/л гидроокиси калия и 10-30 г/л жидкого стекла при напряжении на детали от 400 В и начальной плотности переменного тока 20-25 А/дм2 с последующим понижением ее на 5% каждые 10 мин до толщины не менее 100 мкм, термическую обработку изделия с покрытием при температуре 200-250°С в течение 1-1,5 ч и пропитку в суспензии фторопласта с последующей сушкой при температуре 100-150°С.

Документы, цитированные в отчете о поиске Патент 2004 года RU2237758C1

Способ получения термостойких изоляционных анодных пленок на алюминии и его сплавах 1987
  • Беланович Анатолий Леонидович
  • Щукин Георгий Лукич
  • Селянинов Алексей Юрьевич
  • Коледа Вера Владимировна
  • Голосов Владимир Алексеевич
  • Антонов Дмитрий Анисимович
SU1608253A1
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА АЛЮМИНИИ И ЕГО СПЛАВАХ 1996
  • Гнеденков С.В.
  • Хрисанфова О.А.
  • Коврянов А.Н.
  • Синебрюхов С.Л.
  • Завидная А.Г.
  • Лысенко Л.В.
  • Гордиенко П.С.
RU2112087C1
ГАЗОВАЯ ГОРЕЛКА ПАНЕЛЬНОГО ТИПА 0
SU205197A1

RU 2 237 758 C1

Авторы

Новиков А.Н.

Коломейченко А.В.

Пронин В.В.

Даты

2004-10-10Публикация

2003-11-04Подача