АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА Российский патент 2004 года по МПК G05D16/00 

Описание патента на изобретение RU2239220C1

Изобретение относится к области совершенствования поршневых компрессорных установок тягового подвижного состава, например дизельного тягового подвижного состава, на котором компрессоры приводятся от теплового двигателя. На дизельном тяговом подвижном составе применяются следующие приводы компрессоров: механический неотключаемый от главного теплового двигателя; электрический регулируемый релейно; гидродинамический с регулируемой муфтой; гидродинамический с нерегулируемой муфтой; привод от вспомогательного теплового двигателя (нетключаемый) [1].

Эксплуатация компрессорных установок на локомотивах значительно отличается от эксплуатации их в стационарных условиях. Из-за специфики поездной работы, конструкционных особенностей локомотивов и типов привода компрессоров это отличие характеризуется переменными скоростью вращения вала, давлением нагнетания, температурными условиями, частыми пусками и остановками или сменами рабочего и холостого хода [2].

Известно, что из всех применяемых способов изменения подачи Q2 и давления рк компрессоров способ изменения их путем изменения скорости вращения вала компрессора ωк является наиболее эффективным. Однако для поддержания давления воздуха рк в пневматической системе тягового транспортного средства широко применяются релейные автоматические системы регулирования давления (АСРД), в которых функции исполнительно-регулирующих устройств (ИРУ), т.е. исполнительных механизмов (ИМ) в совокупности с регулирующими органами (РО), выполняют привод компрессора и собственно компрессор (фиг.1). Сама пневматическая система тягового транспортного средства является объектом регулирования давления (ОРД). Автоматический регулятор давления (АРД) содержит кроме исполнительно-регулирующего устройства еще управляющий орган (УО), состоящий из измерительного устройства (ИУ), задающего (ЗУ), сравнивающего (СУ) и усилительно-преобразующего (УУ) устройств [3].

На объект регулирования давления действуют внешние возмущающие воздействия: расход воздуха из пневматической системы Q11), температура Ta2) и давление ра3) атмосферного (всасываемого) воздуха. Для поддержания регулируемой величины - давления рк(ϕ) в заданном диапазоне автоматический регулятор давления изменяет регулирующее воздействие - подачу воздуха Q2(μ) в пневматической системе. Релейный автоматический регулятор давления имеет статическую характеристику в виде петли (фиг.2), и при работе автоматической системы регулирования давления величина рк изменяется в пределах от рк1 до рк2. Повышение давления величина pк oт pк1 до рк2 осуществляется при работе компрессора с максимальной скоростью вращения вала ωкмакс и максимальной подачей Q2 макс. При этом наблюдается максимальная скорость износа деталей цилиндропоршневой группы компрессора и увеличенный расход смазки. Так уменьшение ωк с 1450 до 710 об/мин приводит к снижению скорости износа компрессионных и маслосъемных колец (из улучшенного специального фосфористого чугуна) первой и второй ступеней в 1,3-3 раза, а цилиндров в 2,5-3 раза [4]. Результаты испытаний показывают, что скорость износа деталей компрессора возрастает как с увеличением ωк, так и с увеличением рк, причем более сильное влияние на увеличение скорости износа оказывает давление рк. При увеличении рк в 1,4 раза (с 0,7 до 1,0 МПа) скорость износа шатунных шеек возрастает в 3,2 раза, тогда как при увеличении рк в 1,4 раза (с 1170 до 1640 об/мин) - только в 1,2 раза. Наиболее интенсивно скорость износа начинает увеличиваться при рк более 0,6-0,7 МПа [5].

Изменение режимов работы компрессора оказывает существенное влияние не только на скорость износа деталей цилиндро-поршневой группы, но и на расход смазки. С повышением ωк и давления нагнетания рк расход смазки увеличивается. Например, при испытаниях компрессора на номинальном скоростном режиме с серийными поршневыми кольцами увеличение рк от 0 до 0,6, 0,8 и 1,0 МПа привело к увеличению расхода смазки соответственно в 1,8, 2,7 и 3,0 раза. При уменьшении ωк с 1450 до 710 об/мин расход смазки снижался примерно в 6 раз [4]. Для уменьшения износа деталей цилиндропоршневой группы компрессора и уменьшения расхода смазки необходимо применять непрерывное регулирование рк наиболее эффективным способом - плавным изменением ωк, при котором уменьшается время работы компрессора при ωк макс и рк макс. Автоматические системы регулирования давления непрерывного действия содержат автоматические регуляторы давления, статические характеристики которых имеют вид, показанный на фиг.3 (1 - при выключении привода компрессора при ωк=0; 2 - при выключении привода компрессора при ωк=(0,13-0,17 ωк макс). Анализ свойств автоматического регулятора давления релейного и непрерывного действия показывает, что при непрерывном регулировании давления компрессор работает больше времени при пониженной ωк и пониженном рк, что способствует уменьшению скорости износа деталей цилиндропоршневой группы и уменьшению расхода смазки (стоимость которой на порядок выше стоимости дизельного топлива).

Автоматическая система регулирования давления в пневматической системе тягового транспортного средства с автоматическим регулятором давления непрерывного действия содержит компрессор 1 (фиг.4), приводимый от вала турбинного колеса 2 гидродинамической муфты переменного наполнения 3. Через полый вал насосного колеса 4 гидродинамической муфты в нее поступает масло с подачей G1. Полый вал насосного колеса 4 через повышающий зубчатый редуктор 5 соединен с валом теплового двигателя 6. Подачей масла G1 в гидродинамическую муфту управляет золотник 7. В этом микропроцессорном автоматическом регуляторе давления сигнал рк подается на датчик давления 13, пройдя через первый аналого-цифровой преобразователь (АЦП1) 14, бортовой микропроцессорный контроллер 15 и ЦАП 16, усиливается усилителем 17 и подается на обмотку 18 тягового электромагнита 19, электромагнитная сила которого измеряется измерительной пружиной 9. От соотношения сил тягового электромагнита и пружины зависит положение золотника 7. Сила тягового электромагнита 19 передается измерительной пружине 9 через нажимную шайбу 8. Силу затяжки измерительной пружины 9 можно изменять с помощью регулировочной гайки 10. Положение золотника 7 зависит от рк, но определяется алгоритмом работы микропроцессорного автоматического регулятора давления, учитывающим условия и режимы работы пневматической системы и компрессорной установки тягового транспортного средства. Для учета величины ωк в микропроцессорном автоматическом регуляторе давления применен датчик ωк 20, соединенный с бортовым микропроцессорным контроллером 15 через второй аналого-цифровой преобразователь (АЦП2) 21.

Автоматическая система регулирования давления в пневматической системе тягового транспортного средства работает следующим образом. При рк ниже рк1 (см. фиг.3 и 4) пружина 9 удерживает золотник 7 в крайнем верхнем положении. Отверстие для подачи масла G1 в гидродинамическую муфту 3 полностью открыто золотником 7. Рабочая полость гидродинамической муфты 3 полностью заполнена маслом и турбинное колесо 2 и вал компрессора вращаются со скоростью ωк макс. Компрессор имеет подачу Q2макс, и давление рк повышается. После достижения рк значения pк1 электромагнитная сила тягового электромагнита 19 становится больше силы измерительной пружины 9, Золотник 7 начинает перемещаться и частично перекрывать отверстие для подачи масла G1 в гидродинамическую муфту 3. Это приводит к уменьшению степени наполнения гидродинамической муфты 3, к уменьшению скорости ωк и подачи компрессора Q2. Расход воздуха Q1 из пневматической системы 11 зависит от режимов работы пневматических устройств тягового транспортного средства. Когда подача компрессора станет равной расходу Q1 наступит установившийся режим работы автоматической системы регулирования давления и рк будет постоянным. Если рк становится равным рк2 золотник 7 перекрывает подачу масла G1 в гидродинамическую муфту 3, компрессор останавливается и подача его становится равной нулю. Поскольку компрессор дает заметную подачу при ωк>(0,13-0,17) ωк макс, то автоматическую систему регулирования давления можно настраивать так, чтобы гидродинамическая муфта опоражнивалась при достижении этой минимальной скорости вращения (фиг.3). Таким образом, при разных расходах воздуха из пневматической системы тягового транспортного средства автоматическая система регулирования давления всегда будет поддерживать подачу Q2, равную расходу Q1 при изменении давления в диапазоне от рк1 до рк2.

Источники информации

1. Тепловозы. Конструкция, теория и расчет./Под ред. Н.И.Панова. - М.: Машиностроение, 1976. - 544 с.

2. Шарунин А.А. Эксплуатационные испытания локомотивных компрессоров ПК-35 и ПК-3,5. Труды ЦНИИ МПС, 1970, вып.413.

3. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.

4. Банников В.А., Маньшин А.П. Влияние режимов работы компрессоров на износ деталей цилиндропоршневой группы и расход смазки. - Коломна, Труды ВНИТИ, 1983, вып.58.

5. Цыкунов Ю.И. Результаты испытаний на износ компрессоров ПК-35 и ПК-3,5. - М.: НИИИНФОРМТЯЖМАШ, Транспортное машиностроение, 1968, вып.13.

6. Цыкунов Ю.И., Лесин В.И. Результаты испытаний опытных образцов локомотивных компрессоров ПК-3,5 и ПК-1,75. - М.: НИИИНФОРМТЯЖМАШ. Транспортное машиностроение, 1968, вып.5-67-14.

7. А.Н.Логунов и др. Устройство тепловоза ТГМ6А. М.: Транспорт, 1989.

8. Маньшин А.П. Исследование системы автоматического регулирования скорости вращения компрессора с приводом через гидромуфту переменного наполнения: Дис. кан. техн. наук. - М., МИИТ, 1970.

9. Маньшин А.П. Исследование системы автоматического регулирования скорости вращения компрессора с приводом через гидромуфту переменного наполнения. - Коломна, Труды ВНИТИ, 1975, вып.41.

Похожие патенты RU2239220C1

название год авторы номер документа
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2003
  • Луков Н.М.
  • Ромашкова О.Н.
  • Космодамианский А.С.
  • Алейников И.А.
RU2258838C2
АВТОМАТИЧЕСКАЯ МИКРОПРОЦЕССОРНАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2009
  • Воробьев Владимир Иванович
  • Новиков Виктор Григорьевич
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Пугачев Александр Анатольевич
  • Воробьев Дмитрий Владимирович
  • Капустин Михаил Юрьевич
RU2416814C2
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2003
  • Луков Н.М.
  • Ромашкова О.Н.
  • Космодамианский А.С.
  • Алейников И.А.
RU2258014C2
СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2005
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Алейников Игорь Аркадьевич
RU2283252C1
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2003
  • Луков Н.М.
  • Ромашкова О.Н.
  • Космодамианский А.С.
  • Алейников И.А.
RU2239221C1
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2009
  • Новиков Виктор Григорьевич
  • Воробьев Владимир Иванович
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Воробьев Дмитрий Владимирович
  • Капустин Михаил Юрьевич
  • Пугачев Александр Анатольевич
  • Новиков Антон Сергеевич
RU2438045C2
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2009
  • Новиков Виктор Григорьевич
  • Воробьев Владимир Иванович
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Воробьев Дмитрий Владимирович
  • Капустин Михаил Юрьевич
  • Новиков Антон Сергеевич
RU2416039C1
АВТОМАТИЧЕСКАЯ КОМБИНИРОВАННАЯ МИКРОПРОЦЕССОРНАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2011
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Андреева Ирина Александровна
  • Стрекалов Николай Николаевич
  • Попов Юрий Викторович
  • Людаговский Константин Андреевич
  • Людаговский Андрей Васильевич
  • Панова Татьяна Вячеславовна
RU2502115C2
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2003
  • Луков Н.М.
  • Ромашкова О.Н.
  • Космодамианский А.С.
  • Алейников И.А.
RU2258015C2
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2009
  • Воробьев Владимир Иванович
  • Новиков Виктор Григорьевич
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Воробьев Дмитрий Владимирович
  • Капустин Михаил Юрьевич
RU2415459C1

Иллюстрации к изобретению RU 2 239 220 C1

Реферат патента 2004 года АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ПНЕВМАТИЧЕСКОЙ СИСТЕМЕ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА

Изобретение относится к области совершенствования поршневых компрессорных установок тягового подвижного состава, например дизельного тягового подвижного состава, на котором компрессоры приводятся от теплового двигателя. В автоматической системе регулирования давления, содержащей пневматическую систему, соединенную с компрессором, приводимым от вала теплового двигателя посредством механического редуктора и гидродинамической муфты переменного наполнения, вход которой соединен с регулирующим золотником подачи масла в гидродинамическую муфту, применен микропроцессорный управляющий орган непрерывного действия, к входам которого подключены посредством аналого-цифровых преобразователей датчик давления, соединенный трубопроводом с пневматической системой тягового транспортного средства, и датчик скорости вращения вала компрессора, соединенный с валом компрессора, а выход микропроцессорного управляющего органа связан через цифроаналоговый преобразователь с усилителем, подключенным к обмотке тягового электромагнита, непосредственно соединенного с измерительной пружиной и золотником подачи масла в гидродинамическую муфту. Технический результат заключается в обеспечении автоматического поддержания давления в пневматической системе тягового транспортного средства независимо от расхода воздуха из пневматической системы, температуры и давления атмосферного воздуха. 4 ил.

Формула изобретения RU 2 239 220 C1

Автоматическая система регулирования давления в пневматической системе тягового транспортного средства, содержащая пневматическую систему, соединенную с компрессором, приводимым от вала теплового двигателя посредством механического редуктора и гидродинамической муфты переменного наполнения, вход которой соединен с регулирующим золотником подачи масла в гидродинамическую муфту, отличающаяся тем, что в ней применен микропроцессорный управляющий орган непрерывного действия, к входам которого подключены посредством аналого-цифровых преобразователей датчик давления, соединенный трубопроводом с пневматической системой тягового транспортного средства, и датчик скорости вращения вала компрессора, соединенный с валом компрессора, а выход микропроцессорного управляющего органа связан через цифроаналоговый преобразователь с усилителем, подключенным к обмотке тягового электромагнита, непосредственно соединенного с измерительной пружиной и золотником подачи масла в гидродинамическую муфту.

Документы, цитированные в отчете о поиске Патент 2004 года RU2239220C1

МАНЬШИН А.П
Исследование системы автоматического регулирования скорости вращения компрессора с приводом через гидромуфту переменного наполнения
Труды ВНИТИ
- Коломна, 1975, вып.41
Система смазки двигателя внутреннего сгорания с корректором регулятором топливного насоса 1985
  • Зимагулов Анас Хафизович
  • Сагдеев Рашат Шаукатович
  • Юнусов Рамис Рафатович
  • Зимагулова Гузель Анасовна
SU1353896A1
Двигатель внутреннего сгорания 1986
  • Пилюгин Алексей Сергеевич
  • Бузовский Владимир Андреевич
  • Богач Валентин Михайлович
  • Довиденко Юрий Николаевич
SU1388567A1
Система смазки цилиндра двигателя с продувочным насосом 1987
  • Пилюгин Алексей Сергеевич
  • Пилюгин Сергей Алексеевич
SU1477909A1
Система смазки цилиндра двигателя 1987
  • Пилюгин Алексей Сергеевич
  • Довиденко Юрий Николаевич
  • Богач Валентин Михайлович
  • Бузовский Владимир Андреевич
  • Крыштын Леонид Константинович
  • Муха Николай Иосифович
  • Занько Олег Николаевич
SU1562482A1
RU 2002076 С1, 30.10.1993
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ОБМОТОК ЭЛЕКТРИЧЕСКОЙ МАШИНЫ ПОСТОЯННОГО ТОКА 2000
  • Космодамианский А.С.
  • Луков Н.М.
  • Попов В.М.
RU2177669C2
ГИДРАВЛИЧЕСКАЯ СИСТЕМА ГИДРОМЕХАНИЧЕСКОЙ ПЕРЕДАЧИ ТРАНСПОРТНОГО СРЕДСТВА 2000
  • Бовшовский С.З.
  • Никитин В.В.
  • Ронжин А.Л.
  • Паршенко В.И.
  • Разенков М.А.
RU2187027C2
US 5472008, A, 12.05.1995.

RU 2 239 220 C1

Авторы

Луков Н.М.

Ромашкова О.Н.

Космодамианский А.С.

Алейников И.А.

Даты

2004-10-27Публикация

2003-08-12Подача