Заявляемое изобретение относится к области конструирования и изготовления резиновых массивных шин, предназначенных для колесного безрельсового авто- электротранспорта.
Для оснащения промышленного транспорта, используемого при перевозке грузов внутри предприятий по дорогам и проездам с деревянным, бетонным, металлическим покрытием, когда требуется грузоподъемность, маневренность, устойчивость, высокая стойкость к порезам и проколам, применяют массивные шины.
Как правило, безбандажные массивные шины представляют собой сплошное резиновое кольцо, иногда армированное в зоне посадочной части металлокордом. При монтаже кольцо напрессовывается на колесо с натягом [1].
Аналогичная по конструкции шина, содержащая внутри кольцевого элемента хотя бы один виток жесткого элемента, воспринимающего растягивающие усилия и проходящего внутри литого резинового кольца, образующего массив шины, на расстоянии от его внутренней, наружной и боковых стенок, описана в [2]. Металлокорд может располагаться и вблизи зоны беговой поверхности шины [З].
Предусмотренные ГОСТ 5883-89 [1] шины безбандажного типа содержат соединенный в кольцо металлокорд, находящийся внутри кольцевого резинового массива. При их производстве для надежного крепления шины на колесе необходимо обеспечить высокую прочность связи резины с металлокордом (не менее 4,4 кН/м в соответствии с п.1.3.3 ГОСТ 5883-89), что требует применения дорогостоящего латунированного металлокорда и использования для изготовления массива шины смесей с высоким (до 40 и более %) содержанием бутадиен-метилстирольного синтетического каучука СКСМ при незначительном (около 5%) использовании отходов резинового производства в виде регенерата РШ [4, с.52].
Возможность отслойки металлокорда в процессе эксплуатации, а также вызванная невозможностью широкого использования вторичного сырья высокая стоимость смеси для производства шин соответственно снижает их эксплуатационную надежность и повышает стоимость производства, что снижает конкурентоспособность изделий.
Аналогичными недостатками отличаются выпускаемые отечественной промышленностью безбандажные шины [5], соответствующие ТУ 104224-75, предназначенные для электрокар, электропогрузчиков, зерноочистительных машин, представляющие собой резиновый армированный массив в виде кольца, одеваемого на обод.
Указанными выше недостатками, выраженными в снижении эксплуатационной надежности и повышении стоимости изготовления в связи с возможностью отслойки металлокорда, и малой долей вторичного сырья, используемого при приготовлении резиновой смеси, отличается и массивная шина с наружной беговой и внутренней гладкой цилиндрической посадочной частью, армированная проволочными кольцами, показанная на рис.19д книги [4].
Последняя конструкция по своей технической сущности может быть принята в качестве прототипа.
Задачей, решаемой предлагаемым изобретением, является снижение стоимости изготовления шин и определение соотношения всех параметров шины для возможности выбора их наилучшего сочетания.
Для решения этой задачи в известной массивной шине, содержащей, по крайней мере, протекторную и посадочную части и армирующие кольца, последняя выполнена из резинового массива армированного хаотично ориентированными обрезками волокон корда, внутри которого размещены армирующие кольца, оси которых совпадают с осью установочной поверхности, образованной двумя сходящимися конусными поверхностями, обращенными вершинами друг к другу с возможностью установки на соответствующую поверхность ступицы с натягом и передачей крутящего момента, связанного с основными параметрами шины соответствующими соотношениями.
При этом армирующие кольца выполнены в виде сплошных колец или подвулканизированных бухт проволоки. Возможно разное направление навивки проволоки у соседних колец для равноценности передачи момента на прямом и обратном ходу транспортного средства.
На чертеже изображен чертеж заявляемой шины.
Шина содержит резиновый массив, образованный протекторной частью 1 и посадочной частью 2, выполненный из резины разных сортов. При этом посадочная часть, выполненная в виде резинового массива, армирована хаотично ориентированными обрезками корда, внутри которого размещены армирующие кольца 3, оси которых совпадают с осью установочной посадочной поверхности, образованной двумя сходящимися конусными поверхностями, допускающими передачу требуемого крутящего момента Мкр при определенной силе натяга Тнат, которые могут быть рассчитаны из следующих соотношений:
где [σθ] - допустимые тангенциальные напряжения в армирующем кольце, кг/мм2,
b - ширина кольца, мм,
RH - наружный радиус кольца, мм,
Rcт - радиус ступицы в месте расположения армирующего кольца, мм,
n - число армирующих колец,
Ктр - коэффициент трения посадочной части шины по ступице,
Кn - коэффициент пропорциональности,
α - угол конуса посадочной поверхности, град.
При этом армирующие кольца могут быть выполнены сплошными, составными, навитыми из проволоки. В последнем случае бухту навитой проволоки предварительно подвулканизируют и заделывают внутрь резинового массива при формовке шины, наполненного хаотично ориентированными обрезками волокон корда, которые повышают адгезию армирующих колец к резине и увеличивают прочность самого массива.
Устройство работает следующим образом.
Во время движения транспортного средства основной задачей ведущих колес является передача крутящего момента Мкр со ступицы на шину. А поскольку эта передача осуществляется за счет сил трения, то пара шина - ступица должны иметь достаточный коэффициент трения Ктр и нормальные радиальные силы Трад, возникающие в момент напрессовки шины на конусную поверхность ступицы. В шине также возникают растягивающие тангенциальные усилия, стремящиеся разорвать армирующие кольца, которые воспринимают на себя эту нагрузку. Прочность этих колец зависит от материала, из которого они изготовлены, и определяются допустимыми напряжениями растяжения [σθ]. Фактические напряжения σθ определяются усилием напрессовки (натяга) Тнат.
Между армирующими кольцами и посадочной поверхностью имеется слой резины, который во взаимодействии со ступицей определяет коэффициент трения, фактически - пары сталь - резина.
В момент приложения к колесу крутящего момента Мкр возникает тангенциальная сила трения Ттр, нагружающая армирующие кольца дополнительной тангенциальной нагрузкой, возникшей в момент напрессовки колеса на ступицу.
Таким образом, допустимые тангенциальные напряжения [σθ] "расходуются" на натяг шины на ступицу и на сопротивление крутящему моменту Мкр. Соотношение этих нагрузок учитывается коэффициентом пропорциональности Кn.
Приведенные формулы позволяют выбрать оптимальные размеры армирующих колец, рассчитать требуемую прочность их материала и определить допустимое усилие запрессовки шины на ступицу.
Список использованной литературы
1. Шины массивные резиновые. Технические условия. ГОСТ 5883-89.
2. Патент США №4446903.
3. Авт. свид. №369027.
4. Савосин B.C., Бограчев М.Л. Массивные шины. Конструкция, изготовление, эксплуатация. М.: Химия, 1981 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
МНОГОСЛОЙНАЯ МАССИВНАЯ ШИНА | 2001 |
|
RU2268155C2 |
ТОРООБРАЗНАЯ МАССИВНАЯ ШИНА | 1995 |
|
RU2078696C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БЕЗБАНДАЖНЫХ МАССИВНЫХ ШИН | 1969 |
|
SU233892A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ПОКРЫШЕК МЕТОДОМ ДЕСТРУКЦИИ | 2012 |
|
RU2504469C1 |
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛИУРЕТАНОВОЙ ШИНЫ С НАПОЛНИТЕЛЕМ ИЗ ВСПЕНЕННОГО ПОЛИУРЕТАНА | 2014 |
|
RU2577271C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИУРЕТАНОВОЙ ШИНЫ С ПОВЫШЕННЫМИ АМОРТИЗИРУЮЩИМИ СВОЙСТВАМИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2016 |
|
RU2641932C1 |
ЛИНИЯ ПЕРЕРАБОТКИ ШИН | 2005 |
|
RU2312015C2 |
ПНЕВМАТИЧЕСКАЯ ШИНА ДЛЯ ТРАНСПОРТНЫХ СРЕДСТВ | 1969 |
|
SU249208A1 |
СПОСОБ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН | 2014 |
|
RU2570433C1 |
КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА | 2019 |
|
RU2701598C1 |
Изобретение относится к области конструирования и изготовления резиновых массивных шин, предназначенных для колесного безрельсового авто-, электротранспорта. Армированная шина содержит, по крайней мере, протекторную и посадочную части и армирующие кольца. Посадочная часть шины выполнена из резинового массива, армированного хаотично ориентированными обрезками волокон корда, внутри которого размещены армирующие кольца, оси которых совпадают с осью установочной поверхности посадочной части, образованной двумя сходящимися конусными поверхностями, обращенными вершинами друг к другу, причем армирующие кольца установлены на соответствующую поверхность ступицы с натягом, допускающим передачу крутящего момента. Приведены математические зависимости крутящего момента от силы натяга и параметров шины. Кроме того, армирующие кольца могут быть выполнены в виде подвулканизированных бухт проволоки, а направление навивки бухт проволоки может быть различным. Технический результат - снижение стоимости изготовления шин и определение соотношения всех параметров шины для возможности выбора их наилучшего сочетания. 3 з.п. ф-лы, 1 ил.
где [σθ] - допустимые тангенциальные напряжения в армирующем кольце, кг/мм2;
b - ширина кольца, мм;
Rh - наружный радиус армирующего кольца, мм;
Rcт - радиус ступицы, мм;
n - число армирующих колец;
Ктр - коэффициент трения посадочной части шины по ступице;
Kп - коэффициент пропорциональности;
α - угол конуса посадочной поверхности, град;
Rкол - радиус колеса (шины), мм.
САВОСИН B.C., БОГРАЧЕВ М.Л | |||
“Массивные шины | |||
Конструкция, изготовление, эксплуатация | |||
- М., Химия, 1981, рис.19 д | |||
ТОРООБРАЗНАЯ МАССИВНАЯ ШИНА | 1995 |
|
RU2078696C1 |
МАССИВНАЯ ШИНА | 1989 |
|
RU2006374C1 |
МАССИВНАЯ ШИНА | 1990 |
|
RU2113361C1 |
DE 4014646 А, 21.03.1991 | |||
Способ размножения копий рисунков, текста и т.п. | 1921 |
|
SU89A1 |
ЭЛЕКТРООБОГРЕВАЕМОЕ МНОГОСЛОЙНОЕ СТЕКЛО, ИМЕЮЩЕЕ ЕМКОСТНУЮ ОБЛАСТЬ КОММУТАЦИИ | 2016 |
|
RU2696979C1 |
Авторы
Даты
2005-03-20—Публикация
2001-03-05—Подача