Изобретение относится к области химической промышленности, а именно к способам получения ценных продуктов из низших алканов, в первую очередь метана. Предлагаемый способ может быть использован для производства из метана и природного газа таких продуктов как метилхлорид, винилхлорид, легкие олефины (этилен, пропилен) и многие другие.
Известны способы хлорирования метана с получением ценных продуктов (этан, этилен, пропилен, ароматические углеводороды и пр.), в которых хлорирование метана осуществляют элементарным хлором в газовой фазе при повышенных температурах без использования катализаторов (Патент США № 4199533, С 07 С 9/06, С 07 С 11/04, приоритет от 03.11.78, опубл. 22.04.80; Патент США № 4804797, С 07 С 2/00, приоритет. от 24.08.87, опубл. 14.02.89; Патент США № 5157189, С 07 С 2/00, приоритет от 21.11.90, опубл. 20.10.92).
Основным недостатком этих известных способов является образование значительного количества трудноутилизируемых отходов, таких как полихлорпарафины и полихлоролефины.
Известны способы каталитического окислительного хлорирования метана с использованием катализатора на основе хлоридов меди и других металлов с дополнительным введением в реакционную смесь кислорода (Патент ФРГ № 1249246, B 01 J 27/06, С 07 С 17/154, опубл. 07.09.67; Авт. свид. СССР № 1237657, С 07 С 19/02, 17/154, приоритет от 10.09.84, опубл. 15.06.86; Патент США № 6452058, С 07 С 17/15, 27/00, 51/14, 2/00, приоритет от 21.05.01, опубл. 17.09.02). Применение каталитических способов позволяет повысить выход целевых продуктов хлорирования (в указанных известных способах - метилхлорида).
Недостатком указанных известных способов является образование нежелательных побочных хлоруглеводородных продуктов (полихлорпарафины, полихлоролефины), более того, в присутствии кислорода не исключается также образование диоксинов, фосгена, СО и других высокотоксичных соединений. Кроме того, общим недостатком известных способов является быстрая дезактивация катализаторов и необходимость их периодической замены или регенерации, что существенно осложняет и ограничивает применимость этих способов.
Наиболее близким к предлагаемому является способ каталитического хлорирования метана с использованием силикалитного катализатора со средним значением коэффициента преломления 1.39±0.01 и удельной плотностью при 25°С, равной 1.70±0.05 г/см3 (Патент США № 4795843, С 07 С 11/20, 11/32, 1/00, приоритет от 08.10.87, опубл. 03.01.89). Ведение процесса хлорирования без добавления в реакционную смесь кислорода обеспечивает отсутствие в продуктах реакции высокотоксичных диоксинов, фосгена и СО.
Недостатками данного способа является образование значительного количества трудноутилизируемых отходов, таких как полихлорпарафины и полихлоролефины, а также низкий выход целевых продуктов.
Перед авторами ставилась задача разработать способ каталитического хлорирования низших алканов с получением ценных продуктов
Поставленная задача решается тем, что в способе каталитического хлорирования низших алканов с получением ценных продуктов, включающем пропускание газовой реакционной смеси, содержащей по меньшей мере один из низших алканов и элементарный хлор, через слой катализатора, используют катализатор, представляющий собой геометрически структурированную систему из микроволокон диаметром 5-20 мкм, имеющий активные центры, которые характеризуются в ИК спектрах адсорбированного аммиака наличием полосы поглощения с волновыми числами в диапазоне ν=1410-1440 см-1, содержащий активный компонент, которым является один из металлов платиновой группы, и стекловолокнистый носитель, характеризующийся наличием в спектре ЯМР29 Si линий с химическими сдвигами -100±3 м.д. (линия Q3) и -100±3 м.д. (линия Q4) при соотношении интегральных интенсивностей линий Q3/Q4 от 0.7 до 1.2, в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1, имеющий удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-30 м2/г, величину поверхности, измеренную методом щелочного титрирования, SNa=10-250 м2/г при соотношении SNa/SAr=5-30. При этом активным компонентом катализатора является, по меньшей мере, один из металлов платиновой группы, в частности платина. Стекловолокнистый носитель катализатора может быть структурирован в виде либо нетканого или прессованного материала типа вата или войлок, материала, тканного из нитей диаметром 0,5-5 мм.
Технический эффект предлагаемого способа заключается в возможности эффективного селективного хлорирования низших алканов и достижения высокого выхода целевых продуктов.
Для осуществления способа реакционную смесь, содержащую хотя бы один из низших алканов и элементарный хлор, пропускают через слой катализатора, содержащего активный компонент и стекловолокнистый носитель, причем ИК спектры адсорбированного аммиака на указанном катализаторе имеют характерные полосы в диапазоне 1410-1440 см-1, а в качестве активного компонента используется как минимум один из металлов платиновой группы, в частности платина. Наличие указанных полос в ИК спектрах адсорбированного аммиака является однозначным свидетельством наличия на поверхности катализатора специфических активных центров, обеспечивающих высокую активность и селективность катализатора в реакции хлорирования низших алканов, а также высокую активность и стабильность работы катализатора. Создание таких центров может проводиться путем целенаправленной модификации поверхности катализатора различными способами на стадии его приготовления.
Для осуществления способа используют катализатор, сформированный в виде гибких, проницаемых для потока реакционной смеси стекловолокнистых структур, выполненных в виде тканных или прессованных материалов. Такое структурирование упрощает размещение и закрепление слоя катализатора в каталитическом реакторе и препятствует уносу микроволокон катализатора с реакционным потоком.
Хлорирование низших алканов по описанному способу обеспечивает высокий выход ценных продуктов, таких как метилхлорид, винилхлорид, олефины (этилен, пропилен) и другие. Катализатор отличается повышенной активностью, стабильностью и высоким сроком службы без необходимости проведения процедур регенерации и реактивации. При этом также обеспечивается механическая стабильность слоя катализатора, позволяющая создавать различные типы слоев катализатора (аксиальный радиальный и др.) и располагать каталитический реактор в любой геометрической ориентации (вертикально, горизонтально и пр.), что существенно повышает технологичность и расширяет возможности применения способа.
Пример 1
Хлорированию подвергают природный газ, содержащий не менее 96% метана. Для этого природный газ смешивают с элементарным хлором в объемном соотношении 2:1 и при температуре 300°С и атмосферном давлении пропускают через слой катализатора, содержащего активный компонент (платину) и стекловолокнистый тканный носитель, причем ИК спектры адсорбированного аммиака на указанном катализаторе имеют характерные полосы в диапазоне 1410-1440 см-1. Наблюдается полное превращение хлора, при этом конверсия метана составляет ~38%. Основным продуктом хлорирования является метилхлорид, причем селективность превращения метана в метилхлорид равна 96%. Селективность образования метиленхлорида не превышает 1%, полихлорированных углеводородов - не более 4%, при этом хлороформ, четыреххлористый углерод, фосген, оксид углерода и диоксины в продуктах реакции отсутствуют полностью.
В аналогичных условиях процесс, принятый за прототип, обеспечивает селективность образования метилхлорида не выше 70%. Таким образом, применение предлагаемого способа позволяет увеличить выход целевого продукта на ~40%, а также снизить количество побочных продуктов и отходов не менее чем в 7,5 раз.
Пример 2
То же, что и в примере 1, но процесс ведут при температуре 450-500°С и соотношении природный газ/хлор 1:1. Конверсия хлора - 100%, метана - около 80%. Наблюдается образование легких олефинов (этилена, пропилена) с селективностью до 70%, а также винилхлорида с селективностью до 15%. При повышении соотношения природный газ/хлор до величины 4:1 конверсия метана снижается до ~ 25%, при этом селективность образования олефинов достигает практически 100%.
Процесс, принятый за прототип, не способен обеспечить получение указанных ценных продуктов (олефинов, винилхлорида).
Пример 3
Хлорированию на указанном катализаторе подвергают пропан, при этом процесс ведут при 160°С, атмосферном давлении и при исходном соотношении пропан/хлор/инертный газ 1:1:1. Достигается конверсия пропана 55%, при этом селективность образования монохлорпропанов достигает 80%. При повышении температуры реакции выше 350°С монохлорпропаны превращаются в пропилен с селективностью, близкой к 100%
Процесс, принятый за прототип, не способен обеспечить получение указанных ценных продуктов (монохлорпропанов, пропилена).
Пример 4
To же, что и в примерах 1-3, но используют катализатор, в котором стекловолокна структурированы в виде нетканого прессованного войлока. Достигается результаты, аналогичные описанным.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ХЛОРИРОВАНИЯ МЕТАНА В МЕТИЛХЛОРИД | 2007 |
|
RU2330834C1 |
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ | 2003 |
|
RU2257952C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕГКИХ ОЛЕФИНОВ ИЗ МЕТИЛХЛОРИДА | 2007 |
|
RU2333192C1 |
СПОСОБ ПОЛУЧЕНИЯ ВИНИЛХЛОРИДА | 2003 |
|
RU2250891C1 |
СПОСОБ УТИЛИЗАЦИИ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2003 |
|
RU2252208C1 |
СПОСОБ ОКИСЛЕНИЯ ДИОКСИДА СЕРЫ | 2003 |
|
RU2252915C1 |
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ | 2005 |
|
RU2292950C1 |
СПОСОБ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ОКСИХЛОРИРОВАНИЯ МЕТАНА В МЕТИЛХЛОРИД | 2010 |
|
RU2446881C2 |
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ | 2010 |
|
RU2446877C2 |
СПОСОБ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ УГЛЕВОДОРОДОВ В ГАЗОВЫХ СМЕСЯХ, БОГАТЫХ ОЛЕФИНАМИ | 2005 |
|
RU2289565C1 |
Изобретение относится к области химической промышленности, а именно к способам получения ценных продуктов из низших алканов. Способ осуществляют путем пропускания газовой реакционной смеси, содержащей по меньшей мере один из низших алканов и элементарный хлор через слой катализатора. Используют катализатор, представляющий собой геометрически структурированную систему из микроволокон диаметром 5-20 мкм. Катализатор имеет активные центры, которые характеризуются в ИК спектрах адсорбированного аммиака наличием полосы поглощения с волновыми числами в диапазоне ν=1410-1440 см-1, содержит активный компонент, которым является один из металлов платиновой группы, и стекловолокнистый носитель. Носитель характеризуется наличием в спектре ЯМР29 Si линий с химическими сдвигами -100±3 м.д. (линия Q3) и -110±3 м.д. (линия Q4), при соотношении интегральных интенсивностей линий Q3/Q4 от 0.7 до 1.2, в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1, имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr =0,5-30 м2/г, величину поверхности, измеренную методом щелочного титрирования, SAr=10-250 м2/г при соотношении SNa/SAr=5-30. Технический результат - увеличение выхода продуктов. 2 з.п. ф-лы.
US 4795843 А, 03.01.1989 | |||
ВЫСОКОКРЕМНЕЗЕМИСТЫЙ НОСИТЕЛЬ, КАТАЛИЗАТОР ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1999 |
|
RU2160156C1 |
Способ получения хлорэтанов и продуктов их дегидрохлорирования | 1973 |
|
SU503841A1 |
US 5157189 A, 20.10.1992 | |||
Способ получения хлорметанов | 1984 |
|
SU1237657A1 |
Авторы
Даты
2005-04-27—Публикация
2003-12-26—Подача