Изобретение относится к производству труб, в частности труб из низкоуглеродистых марок сталей.
Такие трубы используются во многих отраслях промышленности и строительства, так как они сравнительно дешевы и хорошо поддаются механической обработке. Технология производства горячекатаных и сварных труб описана, например, в книге П.И.Полухина и др. “Прокатное производство”, 3-е изд., М., “Металлургия”, 1982, с.591-659.
Для повышения износостойкости и коррозионной стойкости труб из низкоуглеродистых сталей применяют защитные покрытия - металлические (например, цинком), эмалевые и керамические, что ведет к значительному удорожанию труб. Кроме того, такие покрытия затрудняют монтаж труб, а при их соединении сваркой нарушается целостность покрытия.
Известна износостойкая труба из низкоуглеродистой стали, содержащая внутренний и внешний износостойкие слои с ледебуритной структурой и имеющая повышенную устойчивость к термодинамическим деформациям (см. пат. РФ №2044778, кл. С 21 D 9/08, опубл. в БИ №27, 1995 г.). Недостатком такой трубы является невысокая коррозионная стойкость в агрессивных средах. Прежде всего, в кислотах (азотной, серной, соляной и др.).
Наиболее близким аналогом к заявляемому объекту является износостойкая труба по пат. РФ №2049124, кл. С 21 D 9/08, С 23 С 8/22, опубл. в БИ №33, 1995 г.
Эта труба содержит внутренний износостойкий слой со структурой ледебурита, внешний коррозионно-стойкий слой из феррита и слой из низкоуглеродистой стали, расположенный в сердцевине стенки трубы между слоем с монотонно возрастающим в направлении к сердцевине содержанием углерода от величины в слое из феррита до величины в слое из низкоуглеродистой стали и слоем с монотонно возрастающими в направлении от сердцевины твердостью и содержанием углерода в интервале от величины твердости и содержания углерода в слое из низкоуглеродистой стали до их величины в слое со структурой ледебурита, причем толщина внешнего слоя из феррита и толщина внутреннего слоя со структурой ледебурита с твердостью не менее 50 HRC составляют 0,01...0,10 толщины стенки трубы.
Недостатком известной трубы также является невысокая коррозионная стойкость при эксплуатации в агрессивных средах, например, при перекачивании химически активных жидкостей.
Технической задачей предлагаемого изобретения является повышение коррозионной стойкости труб в условиях агрессивной среды.
Для решения этой задачи у трубы, содержащей внутренний износостойкий слой, внешний коррозионно-стойкий слой из феррита и слой из низкоуглеродистой стали, расположенный в сердцевине стенки трубы между двумя переходными слоями, износостойкий слой является твердым раствором кремния в α-железе с твердостью 200÷300 ед. HV и с содержанием кремния 14,5...18,0 об. %, при этом толщина коррозионно-стойкого слоя и износостойкого слоя составляют 0,02...0,20 толщины стенки трубы, а содержание углерода во внутреннем износостойком слое не превышает 0,02 об. %.
Сущность заявляемого технического решения состоит в создании такой структуры металла трубы, параметры которой (структуры) обеспечивают как износостойкость изделия, так и его коррозионную стойкость, необходимую для работы в агрессивных средах и с химически активными жидкостями типа кислот. Предлагаемое содержание углерода во внутреннем износостойком слое уплотняет структуру этого слоя, что повышает коррозионную стойкость в водных растворах соляной кислоты и сероводорода (это характерно для канализационных труб).
Схема строения предлагаемой трубы показана на чертеже.
Труба содержит наружный слой 1 из феррита, слой 2 из низкоуглеродистой стали, внутренний слой 3 из твердого раствора кремния в α-железе, переходный слой 4 и слой 5.
Выполнение слоя 3 из твердого раствора кремния в α-железе повышает коррозионную стойкость трубы, как показали опытные испытания (см. ниже), не менее чем в два раза по сравнению с ледебуритом (в сравнимых условиях). Кроме того, твердый раствор кремния в α-железе с твердостью по Виккерсу в пределах 200.300 ед. HV и с содержанием кремния 14,5...18,0 об. % является коррозионно-стойким и износостойким материалом при контакте с водными растворами азотной, серной, ортофосфорной и соляной кислот.
Так как в производственных условиях, при транспортировке, монтаже, ремонтах и эксплуатации на поверхности труб возникают риски, царапины и забоины глубиной до 0,3 мм, то в результате этого может произойти полное разрушение защитного слоя. Увеличение толщин внутреннего износостойкого слоя 3 и внешнего коррозионно-стойкого слоя 1 позволяет сохранить защитные свойства указанных слоев в реальных условиях эксплуатации труб.
Внутренний слой 3 трубы может быть получен диффузионным насыщением поверхности (см., например, справочное пособие Л.Я.Попилова “Советы заводскому технологу”, Л., “Лениздат”, 1975, с.86), а наружный слой 1 - из феррита, способом, описанным в пат. РФ №2049124 и взятом в качестве ближайшего аналога.
Опытные образцы предлагаемой сварной трубы были изготовлены в листопрокатном цехе №7 ОАО “Магнитогорский меткомбинат”: с наружным диаметром 20 мм при толщине стенки 3,2 мм и с наружным диаметром 72 мм при толщине стенки 3,5 мм. Каждый профилеразмер был выполнен в двух вариантах: по известному (см. пат. РФ №2049124) и предлагаемому.
Испытания образцов на коррозионную стойкость проводились в Центральной лаборатории контроля ОАО “ММК”, а их результаты приведены в таблице.
Из таблицы следует, что коррозионная стойкость предлагаемой трубы (по величине износа ее стенки) была выше, чем у известной, при испытаниях в воде в 50 раз, при прокачке азотной кислоты в 5,6 раза и серной кислоты - почти в 4,7 раза.
Таким образом, опытная проверка заявляемого технического решения подтвердила его приемлемость для выполнения поставленной задачи и его преимущества перед известным объектом.
Технико-экономические исследования, поведенные на комбинате, показали, что предлагаемая износостойкая труба по своим эксплуатационным свойствам сравнима с трубами из нержавеющих аустенитных сталей, но дешевле их ориентировочно в 2,5 раза.
Пример конкретного выполнения
Износостойкая сварная труба из ст. 3 диаметром 72 мм и с толщиной стенки 3,5 мм содержит внешний коррозионностойкий слой из феррита толщиной 0,4 мм, внутренний износостойкий слой такой же толщины, являющийся твердым раствором кремния в α-железе с твердостью по Виккерсу 250 ед. и с содержанием в нем кремния 16 об. % и углерода 0,015 об. %, а также слой из низкоуглеродистой стали, расположенный в сердцевине стенки трубы между двумя переходными слоями.
Труба изготовлена путем химико-термической обработки сварной заготовки. При этом осуществляется нагрев ее внутренней поверхности токами высокой частоты в углеродосодержащей среде с помощью наружного кольцевого индуктора и вращение трубы с заданной угловой скоростью вокруг ее продольной оси.
название | год | авторы | номер документа |
---|---|---|---|
ИЗНОСОСТОЙКАЯ ТРУБА И СПОСОБ ЕЕ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1992 |
|
RU2049124C1 |
ИЗНОСОСТОЙКАЯ ТРУБА И СПОСОБ ЕЕ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1992 |
|
RU2044778C1 |
ПОРОШКОВАЯ ПРОВОЛОКА | 2011 |
|
RU2467855C1 |
Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования | 2016 |
|
RU2636210C2 |
ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ | 2013 |
|
RU2571241C2 |
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ФЕРРИТНАЯ СТАЛЬ | 2006 |
|
RU2323998C1 |
НИЗКОУГЛЕРОДИСТАЯ СТАЛЬ И ПРОКАТ ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ПОВЫШЕННОЙ СТОЙКОСТИ К ВОДОРОДНОМУ РАСТРЕСКИВАНИЮ И ПОВЫШЕННОЙ ХЛАДОСТОЙКОСТИ | 2011 |
|
RU2496906C2 |
Чугун | 1982 |
|
SU1065493A1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВОЙ ПЛАКИРОВАННОЙ СТАЛИ | 2016 |
|
RU2633412C1 |
Чугун | 1982 |
|
SU1062295A1 |
Изобретение относится к металлургии, в частности к производству труб из низкоуглеродистых сталей. Техническим результатом изобретения является повышение коррозионной стойкости труб в условиях агрессивной среды. Труба содержит внутренний износостойкий слой, внешний коррозионно-стойкий слой из феррита и слой из низкоуглеродистой стали, расположенный в сердцевине стенки трубы между двумя переходными слоями, при этом износостойкий слой является твердым раствором кремния в α- железе с твердостью 200÷300 ед. HV и с содержанием кремния 14,5...18,0 об.%, толщина коррозионно-стойкого слоя и износостойкого слоя составляет 0,02...0,20 толщины стенки трубы; содержание углерода во внутреннем износостойком слое может не превышать 0,02 об.%. 1 з.п. ф-лы, 1 ил., 1 табл.
ИЗНОСОСТОЙКАЯ ТРУБА И СПОСОБ ЕЕ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1992 |
|
RU2049124C1 |
ИЗНОСОСТОЙКАЯ ТРУБА И СПОСОБ ЕЕ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1992 |
|
RU2044778C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕЦИЗИОННОЙ ТРУБЫ | 1993 |
|
RU2031964C1 |
ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА | 2000 |
|
RU2180691C1 |
Авторы
Даты
2005-07-10—Публикация
2004-07-01—Подача