ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ФЕРРИТНАЯ СТАЛЬ Российский патент 2008 года по МПК C22C38/52 

Описание патента на изобретение RU2323998C1

Изобретение относится к области металлургии, то есть к изысканию сплавов, применяемых в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности.

Ферритные стали, легированные хромом, применяются для изготовления изделий, работающих в окислительных средах, для бытовых приборов, в пищевой и легкой промышленности и для теплообменного оборудования в энергомашиностроении. Эти стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористо-водородной кислот, а также в других агрессивных средах [1].

Известны аналоги изобретения [2-9], позволяющие получить ферритные коррозионно-стойкие стали, обладающие повышенными пластичностью, пределом текучести и производительностью сварки труб [2], устойчивостью к термическому циклическому стрессу и оксидированию при повышенной температуре [3] и т.д. Однако все эти стали обладают недостаточно высокой прочностью.

В настоящее время из числа отечественных ферритных коррозионно-стойких сталей наиболее известны стали 12Х17, 08Х18Т и 015Х18М2Б. При высокотемпературном нагреве в стали 12Х17 возможно образование аустенита, что является нежелательным для сталей этого типа, так как при охлаждении происходит мартенситное превращение, что повышает твердость, снижает пластичность, вызывает склонность к межкристаллитной коррозии. Для предотвращения этого явления уменьшают содержание углерода или вводят титан, ниобий, молибден, которые способствуют получению однофазной структуры, а образование карбидов титана и ниобия снижает склонность к росту зерна и улучшает коррозионную стойкость, в частности, сварных швов (08Х18Т и 015Х18М2Б) [1].

В зарубежной практике разработаны стали с низким суммарным содержанием углерода и азота (0,025-0,035%), содержащие 18-28% Cr и 2-4% Мо, стабилизированные Ti или Nb. Эти стали называют суперферритами; они имеют высокую стойкость во многих агрессивных средах, стойки против коррозии под напряжением, питтинговой и щелевой коррозии [1].

Хромистые ферритные стали имеют крупный недостаток: они могут охрупчиваться в процессах технологических нагревов и длительных выдержек при повышенных температурах во время эксплуатации. В них возможна хрупкость при выдержках при температурах 400-500°С, хрупкость при 600-800°С (в связи с образованием σ-фазы) и хрупкость вследствие образования чрезмерно крупных зерен, например, при сварке. Хрупкость хромистых ферритных сталей трудно, а часто и невозможно устранить последующей обработкой, что сужает возможности их практического использования и накладывает ограничения на технологические операции [1].

Прототипом изобретения является ферритная коррозионно-стойкая сталь [10], содержащая, мас.%: углерод 0,02-0,09, хром 5,0-13,0, кремний 1,0-2,5, алюминий 0,9-1,65, титан 0,2-0,8, молибден 0,07-0,35, ванадий 0,07-0,15, железо - остальное, обладающая повышенной пластичностью, свариваемостью, жаростойкостью в средах продуктов горения и коррозионной стойкостью в солевых и кислых средах, но недостаточной прочностью.

Задача, на решение которой направлено изобретение, заключается в создании высокопрочной коррозионно-стойкой стали, обладающей более высоким комплексом физико-механических свойств (прочность, коррозионная стойкость) в закаленном и состаренном состоянии и в то же время которая была бы не подвержена хрупкости при нагреве.

Поставленная задача достигается тем, что коррозионно-стойкая ферритная сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, дополнительно содержит никель, кобальт, цирконий и гафний при следующем соотношении компонентов, мас.%: углерод до 0,03%, хром 8-25%, никель 5-18%, кобальт 1,5-10%, молибден 0,8-6%, титан 0,5-1,02%, алюминий 6,1-9%, цирконий + гафний ≤0,1%, железо - остальное.

Содержание в стали 0,03% углерода обеспечивает достижение высокой пластичности.

При содержании хрома менее 8% не обеспечиваются коррозионные свойства нержавеющей стали. При большом содержании хрома (более 25%) происходит удорожание стали и возникает опасность образования σ-фазы, которая приводит к понижению пластичности.

Содержание никеля в количестве 5-18% увеличивает пластичность, вязкость; никель также входит в состав упрочняющей фазы. Никель повышает коррозионную стойкость в слабоокисляющихся или неокисляющихся растворах химических веществ. Использование никеля как основы позволяет получить сплавы с высокой коррозионной стойкостью в сильных агрессивных кислотах [11].

Молибден повышает прочность, релаксационную стойкость, способствует повышению коррозионной стойкости и теплостойкости [12-13].

Положительно влияет на свойства сталей комплексное легирование молибденом и кобальтом. Влияние кобальта обусловлено тем, что он уменьшает растворимость молибдена в α-железе и тем самым увеличивает объемную долю фаз, содержащих молибден, то есть способствует повышению прочностных свойств [12]. Кобальт также повышает предел текучести [14].

Дополнительное упрочнение получается в результате дисперсионного твердения. Для этого в сталь вводят алюминий и титан. В исследуемой стали из ОЦК-фазы выделяется интерметаллид NiAl, как в мартенситно-стареющих сталях.

Пользуясь структурной диаграммой для нержавеющих литых хромоникелевых сталей А.Шеффлера (см. чертеж), при изменении содержания алюминия исследуемая сталь попадает в 100%-ную ферритную область (заштрихованная). Относительный вклад каждого элемента в установление структуры определяется никелевым и хромовым эквивалентом по следующим формулам [15]:

%Ni-эквивалента=%Ni+%Co+30(%C)+25(%N)+0,5(%Mn)+0,3(%Cu)

%Cr-эквивалента=%Cr+2(%Si)+1,5(%Mo)+5(%V)+5,5(%Al)+1,5(%Nb)+1,5(%Ti)+0,75(%W)

Пример. Образцы из исследуемой стали 03Х13Н8К5М2Ю6,5Т были выплавлены в индукционных печах типа Таммана весом 1-1,5 кг. Затем подвергались нагреву под закалку в интервале температур 900-1200°С в течение 15 мин с последующим охлаждением в воде. Твердость образцов по Виккерсу после закалки изменялась от 450 до 480 HV5/12,5. Рентгеноструктурное исследование показало, что структура исследуемой стали состоит практически из 100% феррита и незначительного количества упрочняющей упорядоченной интерметаллидной фазы NiAl. Закаленные от 1000°С в воде образцы подвергались старению на 500°С в течение 1 ч. Твердость закаленных образцов после старения повышалась от 480 до 540 HV5/12,5 и микротвердость - от 620 до 800 HV. В исследуемой стали не наблюдалась хрупкость при 400-500°С, так как по результатам рентгеноструктурного анализа упрочнение, получаемое при старении, происходит за счет дополнительного выделения из ОЦК-фазы (феррита) той же интерметаллидной фазы NiAl. Выделение σ-фазы в исследуемой стали при нагреве не наблюдалось, так как алюминий приводит к подавлению выделения σ-фазы [16]. Таким образом, в состоянии закалка + старение на образцах из исследуемой стали удалось получить высокие значения прочностных свойств и сохранение достаточного запаса пластичности. Используя формулу для оценки примерных значений прочности для стали [17]: σв=0,34 НВ, получаем значение прочности для исследуемой стали в состоянии закалка+старение примерно 2108 МПа. Охрупчивания, свойственного ферритным сталям в интервале температур 400-500°С, в исследуемой стали не наблюдалось. Для оценки поведения при деформации образцы исследуемой закаленной стали 03Х13Н8К5М2Ю6,5Т были подвергнуты горячей ковке и последующей холодной пластической деформации (прокатке) до деформации ˜50% без разрушения целостности пластины. Последующее старение деформированной пластины при 500°С привело к увеличению микротвердости до 900 HV. Проведенные исследования на коррозионную стойкость показали, что исследуемая сталь по коррозионной стойкости превышает коррозионную стойкость нержавеющей стали 12Х18Н10Т.

Таким образом, высокий уровень прочностных и коррозионных свойств создает возможность использования исследуемой стали в качестве материала для высокопрочных, коррозионностойких и теплостойких деталей для приборостроения и точного машиностроения в закаленном и состаренном состоянии и не накладывает жестких ограничений на технологические операции (400-500°С).

Список литературы

1. Гольдштейн М.И., Грачев С.В., Векслер Ю.Г. Специальные стали. Учебник для вузов. М.: Металлургия, 1985, 408 с.

2. Патент №2250272. Россия. Публикация 20.04.2005, кл. С22С 38/54. Ферритная нержавеющая сталь.

3. Патент №6773660. США. Публикация 02.10.2002, кл. С22С 38/22. Ферритная нержавеющая сталь для использования при высоких температурах и способ получения фольги из этой стали.

4. Патент №2033465. Россия. Публикация 20.04.1995, кл. С22С 38/54. Ферритная сталь.

5. Патент №3480061. Япония. Публикация 20.09.1994, кл. С22С 38/00. Высокохромистая ферритная жаропрочная сталь.

6. Патент №3468156. Япония. Публикация 13.04.1999, кл. С22С 38/00. Ферритная нержавеющая сталь для деталей выхлопной системы автомобиля.

7. Патент №3367216. Япония. Публикация 20.09.1994, кл. С22С 38/00. Высокохромистая ферритная жаропрочная сталь.

8. Патент №3427502. Япония. Публикация 22.08.1994, кл. С22С 38/00. Ферритная нержавеющая сталь для детали автомобильной выхлопной системы.

9. Патент №3567603. Япония. Публикация 22.04.1996, кл. С22С 38/00. Высокохромистая ферритная сталь, обеспечивающая высокие характеристики ползучести сварного соединения.

10. Патент №2082814. Россия. Публикация 27.06.1997, кл. С22С 38/28. Ферритная коррозионно-стойкая сталь.

11. Бабаков А.А., Приданцев М.В. Коррозионно-стойкие стали и сплавы. М.: Металлургия, 1971, 200 с.

12. Грачев С.В., Бараз В.Р. Теплостойкие и коррозионно-стойкие пружинные стали. М.: Металлургия, 1989, 144 с.

13. Рахштадт А.Г. Пружинные стали и сплавы. М.: Металлургия, 1982, 400 с.

14. Патент №2035524. Россия. Публикация 20.05.1995, кл. С22С 38/58. Коррозионно-стойкая сталь

15. МИТОМ №10, 1997 г. Вороненко Б.И. Современные коррозионно-стойкие аустенитно-ферритные стали.

16. Сокол И.Я. Двухфазные стали. М.: Металлургия, 1964, 215 с.

17. Солнцев Ю.П., Пряхин Е.И. Материаловедение: Учебник для вузов. СПб.: ХИМИЗДАТ, 2004, 736 с.

Похожие патенты RU2323998C1

название год авторы номер документа
ФЕРРИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2007
  • Мальцева Людмила Алексеевна
  • Грачев Сергей Владимирович
  • Мальцева Татьяна Викторовна
  • Озерец Наталья Николаевна
  • Шешуков Олег Юрьевич
RU2352680C1
АУСТЕНИТНО-ФЕРРИТНАЯ СТАЛЬ С ВЫСОКОЙ ПРОЧНОСТЬЮ 2013
  • Мальцева Людмила Алексеевна
  • Мальцева Татьяна Викторовна
  • Левина Анна Владимировна
  • Шарапова Валентина Анатольевна
  • Третникова Мария Павловна
RU2522914C1
ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 2013
  • Мальцева Людмила Алексеевна
  • Левина Анна Владимировна
  • Мальцева Татьяна Викторовна
  • Третникова Мария Павловна
  • Демидов Степан Анатольевич
RU2571241C2
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ 2004
  • Грачев С.В.
  • Мальцева Л.А.
  • Мальцева Т.В.
  • Юрин С.В.
RU2252977C1
КОРРОЗИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ 2010
  • Мальцева Людмила Алексеевна
  • Шарапова Валентина Анатольевна
  • Мальцева Татьяна Викторовна
  • Озерец Наталья Николаевна
  • Левина Анна Владимировна
  • Цаплина Елена Михайловна
RU2430187C1
ДВУХФАЗНАЯ АУСТЕНИТНО-ФЕРРИТНАЯ СТАЛЬ 1997
  • Грачев Сергей Владимирович
  • Мальцева Людмила Алексеевна
  • Мальцева Татьяна Викторовна
RU2116373C1
СТАЛЬ КОРРОЗИОННО-СТОЙКАЯ В СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2022
  • Иванова Татьяна Николаевна
  • Ковалев Дмитрий Юрьевич
RU2810411C1
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
ДУПЛЕКСНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ПРОИЗВОДСТВА ЗАПОРНОЙ И РЕГУЛИРУЮЩЕЙ АРМАТУРЫ 2017
  • Левков Леонид Яковлевич
  • Уткина Ксения Николаевна
  • Шурыгин Дмитрий Александрович
  • Баликоев Алан Георгиевич
  • Ефимов Виктор Михайлович
  • Калугин Дмитрий Александрович
  • Марков Сергей Иванович
  • Орлов Сергей Витальевич
  • Толстых Дмитрий Сергеевич
RU2693718C2
ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ (ВАРИАНТЫ) И ИЗДЕЛИЕ ИЗ СТАЛИ (ВАРИАНТЫ) 2007
  • Кузнецов Юрий Васильевич
  • Лойферман Михаил Абрамович
  • Штейников Сергей Петрович
RU2383649C2

Иллюстрации к изобретению RU 2 323 998 C1

Реферат патента 2008 года ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ФЕРРИТНАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к сталям, применяемым в машиностроении для изделий, к которым предъявляются требования обеспечения высокой твердости и коррозионной стойкости при достаточной пластичности. Высокопрочная коррозионностойкая ферритная сталь содержит углерод, хром, никель, кобальт, молибден, титан, алюминий, цирконий, гафний и железо при следующем соотношении компонентов, мас.%: углерод до 0,03, хром 8,0-25,0, никель 5,0-18,0, кобальт 1,5-10,0, молибден 0,8-6,0, титан 0,5-1,02, алюминий 6,1-9,0, цирконий + гафний до 0,1, железо - остальное. Сталь обладает повышенным уровнем прочностных и коррозионных свойств. 1 ил.

Формула изобретения RU 2 323 998 C1

Высокопрочная коррозионно-стойкая ферритная сталь, содержащая углерод, хром, молибден, титан, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель, кобальт, цирконий и гафний при следующем соотношении компонентов, мас.%:

углероддо 0,03хром8,0-25,0никель5,0-18,0кобальт1,5-10,0молибден0,8-6,0титан0,5-1,02алюминий6,1-9,0цирконий + гафнийдо 0,1железоостальное

Документы, цитированные в отчете о поиске Патент 2008 года RU2323998C1

ФЕРРИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1994
  • Тишков В.Я.
  • Белосевич В.К.
  • Громов Г.И.
  • Балдаев Б.Я.
  • Кузнецов В.В.
  • Сергеев Е.П.
  • Осипов Ю.А.
  • Рослякова Н.Е.
RU2082814C1
ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2003
  • Полинец В.А.
  • Новикова Т.В.
  • Полинец Д.В.
  • Чернышов Е.Я.
  • Балдин В.С.
  • Братко Г.А.
RU2250272C1
ФЕРРИТНАЯ СТАЛЬ 1991
  • Талов Н.П.
  • Маркелова Т.А.
  • Залеский С.И.
  • Смирнов Л.Н.
  • Кацин И.О.
  • Ефремов В.Г.
  • Козлович В.Н.
  • Мельников Ю.Я.
  • Агишев Л.А.
  • Максутов Р.Ф.
RU2033465C1
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1998
  • Семенов В.Н.
  • Каблов Е.Н.
  • Качанов Е.Б.
  • Петраков А.Ф.
  • Бирман С.И.
  • Батурина А.В.
  • Шалькевич А.Б.
  • Пестов Ю.А.
  • Недашковский К.И.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Сигаев В.А.
  • Кукин Е.А.
  • Харламов В.Г.
  • Козыков Б.А.
  • Головченко С.С.
RU2176283C2
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
US 2003086809 A1, 08.05.2003
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1

RU 2 323 998 C1

Авторы

Мальцева Людмила Алексеевна

Грачев Сергей Владимирович

Мальцева Татьяна Викторовна

Озерец Наталья Николаевна

Завьялова Ольга Яковлевна

Даты

2008-05-10Публикация

2006-09-06Подача