КОМПОЗИЦИИ ДЛЯ ПОДАВЛЕНИЯ КОКСООБРАЗОВАНИЯ В ПЕЧАХ ДЛЯ ПРОВЕДЕНИЯ ТЕРМИЧЕСКОГО КРЕКИНГА Российский патент 2005 года по МПК C10G9/16 

Описание патента на изобретение RU2258731C2

ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ

Данная заявка заявляет пользу эффекта, описанного в предварительной заявке США, регистрационный №60/221308, поданной 28 июля 2000 года.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область техники

Данное изобретение относится к композициям или к комбинациям соединений, которые подавляют коксообразование в печах для проведения термического крекинга.

Описание предшествующего уровня техники

При получении олефинов, в частности этилена, поток обычных углеводородов, таких как этан, пропан, бутан, нафта и газойль, пиролизуют при высоких температурах в термической печи. Продукт представляет собой смесь олефинов, которые разделяют на последующих стадиях технологической схемы. При получении этилена вместе с подаваемыми углеводородами обычно инжектируют и воду, которая действует в качестве теплопроводящей среды и активатора газификации кокса. Обычно незначительным по количеству, но важным, с точки зрения технологии, побочным продуктом крекинга углеводородов с использованием водяного пара является кокс. Водяной пар, получаемый из совместно инжектированной воды, вступает в реакцию с коксом и частично превращает его в монооксид углерода и водород. На стенках реактора, вследствие наличия у отложений кокса свойства накапливаться, происходит их нарастание, что повышает, таким образом, как температуры труб, так и перепад давления вдоль трубы. Следствием этого является необходимость останавливать процесс для удаления кокса. Данные периодические простои при производстве этилена по оценкам в результате выражаются в 2 миллиардах долларов в год. В дополнение к этому существует непосредственная взаимосвязь между количеством образовавшегося кокса и выходом олефина, что говорит о том, что кокс образуется за счет снижения эффективности получения олефина.

Для сведения к минимуму коксообразования обычной практикой при коммерческом получении этилена является совместное с углеводородами инжектирование небольших количеств серосодержащих соединений, таких как сульфид водорода (H2S), диметилсульфид (DMS) или диметилдисульфид (DMDS). Было предположено, что сера пассивирует активную металлическую поверхность, которая, как известно, выступает в качестве катализатора коксообразования. В дополнение к этому известно, что серосодержащие соединения уменьшают образование монооксида углерода (СО), получаемого в результате протекания реакции углеводородов или кокса с водяным паром, опять-таки в результате пассивирования каталитического действия металлической поверхности и в результате катализирования реакции конверсии водяного пара, которая превращает СО в диоксид углерода (СО2). Сведение к минимуму количества получаемого СО является существенным для надлежащего функционирования на стадии концентрирования перегонкой, расположенной далее на технологической схеме.

Патент США 4404087 описывает, что предварительная обработка труб крекинг-печи композициями, содержащими соединения олова (Sn), сурьму (Sb) и германий (Ge), уменьшает скорость коксообразования при проведении термического крекинга углеводородов.

В патенте США 4692234 описано, что комбинации Sn, Sb и Si делают то же самое.

Также было заявлено, что согласно измерениям взвешенного по времени коэффициента селективности для СО (ЕР 134555, 1985) коксообразование уменьшают и смеси содержащих хром и сурьму соединений 2-этилгексановой кислоты и композиций Cr-Sn.

Описаны (WO 9914290, 1999) несколько комбинаций соединений фосфора и серы с соединениями Sn и Sb (США 4551227 и ЕР 733693, 1996), которые уменьшают коксообразование в печах для пиролиза углеводородов.

В целом патенты США 4507196; 4511405; 4552643; 4613372; 4666583; 4686201; 4687567; 4804487 и 5015358 описывают, что металлы Sn, Ti, Sb, Ga, Ge, Si, In, Al, Cu, Р и Cr, их неорганические и органические производные, индивидуально или в виде смесей, будут действовать в качестве добавок, препятствующих обрастанию реактора, уменьшая коксообразование во время пиролиза углеводородов.

Моно- и диэфиры фосфорной и фосфористой кислоты или их аминовые соли при смешивании с сырьем для крекинга, например, с этаном, значительно увеличили продолжительность работы аппаратуры в сравнении с ее работой, проводимой без введения добавок (США 4105540).

Было показано, что предварительная обработка труб печи при высокой температуре ароматическими соединениями, такими как замещенные бензолы, нафталины и фенантрены, перед введением сырья для крекинга уменьшает каталитическое коксообразование (США 5733438). Было показано, что коксообразование уменьшает и проведение крекинга для тяжелого углеводорода, предпочтительно потока высшего олефина, перед введением низших углеводородов (США 4599480). В обоих случаях заявлено, что тонкий слой каталитически неактивного кокса, образованного на поверхности трубы, ингибирует дальнейшее протекание коксообразования.

Несколько патентов описывают использование различных соединений Si, при помощи которых на металлические трубы наносится керамический слой, который, таким образом, уменьшает коксообразование при пиролизе. Для нанесения слоя оксида кремния на трубы из металлического сплава использовали соединения, такие как силоксаны, силаны и силазаны (США 5424095; 5413813; 5208069). Независимо в патентах NL 7804585; GB 1552284 и DE 2819219 было заявлено, что то же самое делают и силикаты. Почти во всех примерах сведение к минимуму коксообразования относится к каталитическому коксу, в основном образующемуся на ранних стадиях пиролиза. Патент (WO 9522588) для подавления коксообразования описывает использование соединения кремния и соединения серы в виде смеси, которая отличается соотношением Si/S в диапазоне от 1/1 до 5/1.

Другим подходом к уменьшению коксообразования является пассивирование активной металлической поверхности в пиролизных трубах за счет формирования поверхностного сплава, содержащего металлы/оксиды металлов, о которых известно, что они не катализируют коксообразование. Жаропрочные сплавы (НТА) представляют собой группу аустенитных нержавеющих сталей, используемых в промышленных процессах, реализуемых при повышенных температурах выше 650°С. Они обычно содержат 18-38% Cr, 18-48% Ni с доведением до баланса при помощи Fe и легирующих добавок. Железо и никель являются известными катализаторами образования волокнистого углерода во время получения этилена и пиролиза углеводородов вообще. С другой стороны, известно, что слой оксида хрома или алюминия является ингибитором каталитического коксообразования, и поэтому он используется для защиты данных сплавов. Защита с использованием данных оксидов должна быть спроектирована тщательным образом так, чтобы не ухудшить физические характеристики и свойства НТА, такие как сопротивление ползучести, и чтобы сохранить сопротивление оксидного слоя воздействию жестких условий, обычно встречающихся при пиролизе углеводородов. CoatAlloy® представляет собой технологию, разработанную компанией Surface Engineered Products из Альберты, Канада, которая предлагает способ поверхностного легирования внутренних областей у трубы из НТА для использования в печи для получения этилена. На поверхность основного сплава наносят покрытие в виде продуктов, имеющих состав Cr-Ti-Si и Al-Ti-Si, после чего проводят тепловую обработку для формирования либо только диффузионного защитного слоя, либо диффузионного слоя и объединенного обогащенного слоя рядом с ним. В обоих случаях пропускают газообразные окислители для активирования слоев за счет образования оксида алюминия и/или оксида хрома вместе с оксидом титана и оксидом кремния. Было заявлено, что подвергнутые обработке трубы значительно уменьшают каталитическое коксообразование, сводят к минимуму науглероживание труб из основного сплава, обнаруживают улучшенные эрозионную стойкость и термостойкость (WO 9741275, 1997). Поток газообразного этана, использованный для тестирования эффективности покрытия, содержал 25-30 м.д. серы.

Сообщалось (Industrial & Engineering Chemistry Research, Vol.37, 3, 901, 1998) об уменьшении скоростей коксообразования как на кварцевых поверхностях, так и на поверхностях сплава "Инколой" в результате использования низких концентраций гексахлорплатиновой кислоты (Н2PtCl6) в водяном паре, использованном при крекинге этана. Скорости коксообразования уменьшались несмотря на то, что наблюдаемые энергии активации увеличивались. Уменьшенная эффективность добавки при более высоких температурах предполагает, что основное действие добавка оказывает на процесс коксообразования на поверхности.

Данные, применявшиеся ранее, подходы к уменьшению коксообразования либо включали методики пассивирования металла различными добавками, такими как сера, кремний, фосфор и тому подобное, либо использовали специальные сплавы. Все это представляет собой способы обработки поверхности.

Целью настоящего изобретения являлась разработка улучшенной технологии уменьшения коксообразования в коммерческих печах для проведения термического крекинга. Уменьшенные уровни содержания кокса преобразуются в более высокие выходы этилена, а уменьшенные времена простоя для удаления кокса из аппарата также сделают возможными более высокие скорости получения.

КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ

Изобретением является комбинация, полезная для уменьшения или предотвращения коксообразования в печах для проведения термического крекинга, таких как использующие водяной пар крекинг-печи для получения этилена, комбинация состоит из

(A) одного или нескольких соединений, описываемых формулой

R-Sx-R',

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил, а х=1-5; и

(B) одного или нескольких соединений, выбираемых из следующей группы:

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил (например, гидроксиламины);

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил (например, алкилгидразины); и

где R представляет собой Н, алкил, а R' и R'' представляют собой алкил с количеством атомов углерода от 1 до 24 (например, алкил-/ариламиноксиды).

Изобретением также является улучшенный способ получения олефиновых соединений, таких как этилен или пропилен, в результате введения описанной выше смеси в поток подвергаемого крекингу углеводородного сырья или в другой исходный поток, такой, как вода/водяной пар, перед попаданием любого из потоков в печь для проведения термического крекинга.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ.

Существуют два основных механизма коксообразования в печах для получения этилена - каталитический и некаталитический. При каталитическом коксообразовании углеводород адсорбируется в месте нахождения металла. По мере того, как металл будет катализировать разложение углеводорода до получения элементарного углерода, углерод будет диффундировать через частицу металла. Осаждение парообразного углерода происходит ниже поверхности, и фактически частица металла будет подниматься, отходя от поверхности. Данный процесс диффузии и осаждения углерода происходит снова и снова, и в результате на внутренней поверхности труб крекинг-печи образуются волокна углерода (у каждого на конце располагается частица металла). Для уменьшения интенсивности каталитического коксообразования использовали производные серы и фосфора, этот эффект достигается преимущественно в результате пассивирования металлической поверхности, что уменьшает вероятность возникновения явлений, которые приводят к образованию волокон углерода или же такие явления устраняет.

При некаталитическом коксообразовании углеводороды термически разлагаются в газовой фазе в результате протекания свободно-радикальных реакций. Многие из этих реакций приводят к получению полезных соединений, таких как этилен, пропилен и тому подобное. Однако различные реакции рекомбинации могут привести к получению молекул с большей длиной цепи, которые могут быть захвачены в поверхностных углеродных волокнах. С течением времени данные предшественники кокса растут и становятся коксом, полностью выстилающим поверхность реактора. Другие длинноцепные молекулы могут покинуть реактор и сконденсироваться на участке охлаждения. Конечным результатом данных некаталитических реакций будет образование дополнительного количества кокса и/или тяжелых конденсатов, следствием образования их обоих будет уменьшение количества получаемого этилена.

На предшествующем уровне техники в поле зрения находилось предотвращение образования только каталитического кокса, для чего использовали пассивирование металлической поверхности. Настоящее изобретение рассматривает образование как каталитического, так и некаталитического кокса. Данный подход приведет к более низким уровням общего коксообразования, чем те, что были ранее описаны, и результатом этого будет уменьшение времени простоя для коммерческих установок.

В самом широком смысле данное изобретение объединяет поверхностную обработку, пассивирующую металл для уменьшения каталитического коксообразования, и уменьшение газофазного коксообразования. Таким образом, любое соединение, о котором известно, что оно пассивирует металлические поверхности, совместно с соединениями, о которых известно, что они являются акцепторами для свободных радикалов, такими как производные фенола, меркаптаны, гидразины, фосфины и тому подобное, попадает в объем настоящего изобретения. Также должны быть включены и индивидуальные соединения, которые обладают обеими упомянутыми выше функциями, такие как серосодержащее производное гидроксиламина.

Настоящим изобретением также является усовершенствованный способ получения олефиновых соединений, таких как этилен или пропилен, в результате введения описанных выше компонентов в поток подвергаемого крекингу углеводородного сырья или в другой исходный поток, такой как вода/водяной пар, перед попаданием любого из потоков в печь для проведения термического крекинга.

Серосодержащие соединения, полезные в настоящем изобретении, описываются формулой

R-Sx-R',

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил, а х=1-5.

Примеры таких соединений включают H2S, метил-, этил-, пропил-, бутил- и высшие меркаптаны, арилмеркаптаны, диметилсульфид, диэтилсульфид, несимметричные сульфиды, такие как метилэтилсульфид, диметилдисульфид, диэтилдисульфид, метилэтилдисульфид, высшие дисульфиды, смеси дисульфидов, такие как мерокс, серосодержащие соединения, естественным образом присутствующие в потоках углеводородов, такие как тиофен, алкилтиофены, бензотиофен, дибензотиофен, полисульфиды, такие как трет-нонилполисульфид, трет-бутилполисульфид, фенолы и фосфины. Предпочтительны алкилдисульфиды, такие как диметилдисульфид, а наиболее предпочтителен диметилсульфид. Границами предпочтительных диапазонов содержания добавки в расчете на поток углеводородного сырья являются 5 и 1000 м.д. Более предпочтителен диапазон 25-500 м.д., а наиболее предпочтителен диапазон 100-300 м.д. Отношения содержания серосодержащего соединения к содержанию компонента, захватывающего свободные радикалы, заключены в диапазоне от 1-0,1 (масса на массу) до 1-100.

Соединения компонента В выбирают из группы, описываемой следующими формулами:

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил (например, гидроксиламины);

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил (например, алкилгидразины); и

где R представляет собой Н, алкил, а R' и R'' представляют собой алкил с количеством атомов углерода от 1 до 24 (например, алкил-/ариламиноксиды).

Примеры таких соединений включают гидроксиламин, моноизопропилгидроксиламин, диэтилгидроксиламин, дибутилгидроксиламин, гидразин, метилгидразин, диметилгидразин, триэтиламиноксид. Предпочтителен гидразин, более предпочтителен гидроксиламин, а наиболее предпочтителен диэтилгидроксиламин. Границами предпочтительных диапазонов содержания добавки в расчете на поток углеводородного сырья являются 5 и 1000 м.д. Более предпочтителен диапазон 25-500 м.д., а наиболее предпочтителен диапазон 100-300 м.д. Отношения содержания данного соединения к содержанию серосодержащего компонента заключены в диапазоне от 1-0,1 (масса на массу) до 1-100.

Данная комбинация полезна при уменьшении или предотвращении коксообразования в печах для проведения термического крекинга, таких как использующие водяной пар крекинг-печи для получения этилена.

Кроме этого в объем настоящего изобретения включается использование описанных выше комбинаций в сочетании с различными обработками поверхности, предварительными обработками, специальными сплавами и специальными покрытиями для труб, описанными на предшествующем уровне техники.

Настоящее изобретение описывает синергизм между серосодержащими соединениями, такими как DMS или DMDS (которые пассивируют металлическую поверхность), и акцепторами свободных радикалов, такими как DEHA, которые ингибируют коксообразование в газовой фазе, захватывая только что образовавшихся предшественников кокса. Независимо от механизма синергизм, обнаруженный для описанных выше соединений, приводящий в результате к более низким значениям полного количества образовавшегося кокса по сравнению со случаем, когда любой из компонентов использовался бы в одиночку, удивителен и неожидан.

Предпочтительным способом реализации настоящего изобретения на практике является совместное инжектирование в поток углеводородного сырья непосредственно перед его введением в печь DMS или DMDS и DEHA, либо по отдельности, либо вместе в виде смеси. Оптимальные уровни обработки будут зависеть от эксплуатационных переменных величин для индивидуальных коммерческих печей, но большинство коммерческих ситуаций должны охватывать уровни содержания каждого компонента в диапазоне от 5 до 1000 м.д.

Преимущество настоящего изобретения заключается в том, что уровни обработки каждым компонентом могут быть индивидуально подогнаны и оптимизированы для каждой коммерческой установки в зависимости от ее эксплуатационных переменных величин.

В теории желательно было бы, чтобы перед введением описанных соединений в трубы крекинг-печи разложение соединений было бы сведено к минимуму. Поэтому в этом отношении, вероятно, большое значение имеет способ инжектирования в печь. Лучшие результаты должны показать системы, которые делают возможным быстрое инжектирование при незначительной предварительной обработке.

Данное изобретение также может найти себе применение и в сочетании с созданием новых сплавов или покрытий для труб, создание которых имеет целью уменьшение или устранение каталитического коксообразования.

Многие потоки углеводородного сырья содержат естественно встречающиеся соединения серы, такие как тиофены, бензотиофены, дибензотиофены, сульфиды и дисульфиды. В объем настоящего изобретения входит и использование естественно встречающихся соединений серы совместно с вышеупомянутыми акцепторами свободных радикалов.

Следующий далее пример предлагается для иллюстрации данного изобретения и вариантов реализации настоящего изобретения.

ПРИМЕР 1

Диметилсульфид (DMS), диметилдисульфид (DMDS) и безводный диэтилгидроксиламин (DEHA) были приобретены в компании Aldrich Chemical Company. Железо-никелевые порошки со степенью чистоты "чистый для исследований" были получены в компании Johnson Matthey Inc.

Порошкообразный Fe-Ni помещали на дно керамической лодочки в центре реактора из кварца (40 мм внутренний диаметр и 90 см длина), который был расположен в обычной горизонтальной печи Линдберга. После этого металлический порошок восстанавливали в 10% H2-He смеси при 600°С в течение 1 часа, после чего реактор продували гелием по мере того, как система реактора достигала желаемой температуры. Поток газа в реактор отслеживали и регулировали при помощи регуляторов массового расхода MKS. После того, как желательная температура была достигнута, при помощи регуляторов массового расхода вводили смесь реагентов, содержащую этан/водяной пар (4:1), и при помощи шприцевого насоса SAGE вводили смеси DEHA/серосодержащие соединения. Реакции обычно проводили в течение двух часов, в течение которых при помощи газовой хроматографии анализировали составы газов на выходе из реактора. По завершении времени реакции реактор снова продували гелием и охлаждали до комнатной температуры.

Количество каталитического углерода, образовавшегося за каждый прогон, определяли, тщательно взвешивая керамическую лодочку, которая содержала металлический порошок и образовавшийся каталитический углерод. Остающуюся на стенке реактора и в ловушке смолу считали пиролитическим углеродом и ее также тщательно взвешивали. Полное количество углерода определяли, суммируя количества каталитического и пиролитического углерода.

Для результатов, приведенных в последующих таблицах, использовали следующие условия:

Расход этана: 140 куб.см/минРасход водяного пара: 35 куб.см/минДавление: 1 атмосфераВремя реакции: 2 часаТемпература: 815°ССплав Fe-Ni: 20:80

Значения количеств каталитического углерода, полных количеств углерода и количеств этилена представляют собой выходы в расчете на полный баланс по углероду.

Таблица 1
Влияние DMS и DEHA на образование углерода и выход этилена
Температура (°С).DMS (м.д.)DEHA (м.д.)Количество каталитического углерода.Полное количество углеродаКоличество этилена8150010,259,38,781515004,331,323,281530003,134,117,6815015021,546,517,4815030014,735,917,08151501506,2219,320,6

Таблица 2
Влияние DMDS и DEHA на образование углерода и выход этилена
Температура (°С)DMDS (м.д.)DEHA (м.д.)Количество каталитического углеродаПолное количество углеродаКоличество этилена8150010,259,38,78152504,162,714,9815030014,735,917,08152530018,929,128,6

Во всех частях описания изобретатели ссылались на различные соединения, использованные в их изобретении, как на соединения на основе определенных компонентов, и изобретатели имеют в виду, что данные соединения по существу состоят из данных компонентов или что данные компоненты представляют собой по меньшей мере основные компоненты в этих соединениях.

Специалистам в соответствующей области будет очевидно, что в отношении композиций и способа настоящего изобретения могут быть реализованы различные модификации и вариации без отклонения от объема и сущности изобретения. Предполагается, что данные модификации и вариации настоящего изобретения должны быть включены в виде части данного изобретения при условии, что они попадают в объем прилагаемой формулы изобретения и ее эквивалента.

Похожие патенты RU2258731C2

название год авторы номер документа
Способ снижения коксообразования в реакторах пиролиза углеводородов 2018
  • Шепелин Владимир Александрович
  • Якупов Алмас Айратович
  • Яруллин Ильгиз Миннесалихович
  • Пономарев Сергей Иванович
  • Перцева Надежда Владимировна
RU2679610C1
СПОСОБ СНИЖЕНИЯ КОКСОВАНИЯ ПОВЕРХНОСТЕЙ ТЕПЛООБМЕННИКОВ 1995
  • Герхард Циммерманн
  • Вольфганг Жихлински
RU2121490C1
СПОСОБ ПОЛУЧЕНИЯ НИЗШИХ ОЛЕФИНОВ 1995
  • Залман Е.Гандман[Us]
RU2057784C1
СПОСОБ ХИМИЧЕСКОЙ ОБРАБОТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ РЕАКТОРА ДЛЯ ПИРОЛИЗА УГЛЕВОДОРОДОВ 2013
  • Нестеров Олег Николаевич
  • Гильманов Хамит Хамисович
  • Сахабутдинов Анас Гаптынурович
  • Шарифуллин Ильфат Габдулвахитович
  • Погребцов Валерий Павлович
  • Шатилов Владимир Михайлович
  • Шепелин Владимир Александрович
  • Яруллин Ильгиз Миннесалихович
  • Якупов Алмас Айратович
  • Гилязев Марат Марсович
RU2566244C2
КОМПОНЕНТЫ ДЛЯ ПРИГОТОВЛЕНИЯ СМЕШИВАЕМЫХ ТРАНСПОРТИРУЕМЫХ ТОПЛИВ 2002
  • Ходжес Майкл
  • Китли Грэхем
RU2312888C2
СПОСОБ ПРЕДОТВРАЩЕНИЯ КОКСООБРАЗОВАНИЯ, КАТАЛИЗИРУЕМОГО МЕТАЛЛОМ 2010
  • Кауч Кит Э.
  • Гозлинг Кристофер Д.
RU2505584C2
КОМПОЗИЦИЯ НА ОСНОВЕ ОРГАНИЧЕСКОГО СУЛЬФИДА С ЗАМАСКИРОВАННЫМ ЗАПАХОМ 2010
  • Шмитт Поль-Гийом
RU2501788C2
КАТАЛИЗАТОР ПАРОВОГО КРЕКИНГА УГЛЕВОДОРОДОВ ДЛЯ ПОЛУЧЕНИЯ ОЛЕФИНОВ, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 2002
  • Джионг Сэнг-Ман
  • Ли Вон-Хо
  • Чей Джонг-Хьюн
  • Кэнг Джун-Хэн
  • Парк Сэнг-Ку
RU2283178C2
Препятствующее коксообразованию оборудование, способ его изготовления и его применение 2021
  • Ван Хунся
  • Ван Гоцин
  • Ван Шэньсян
  • Цзя Цзиншэн
  • Чжан Лицзюнь
RU2800956C1
КАТАЛИЗАТОР КОНВЕРСИИ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Кущ С.Д.
  • Кузнецов С.В.
  • Моднев А.Ю.
RU2230611C1

Реферат патента 2005 года КОМПОЗИЦИИ ДЛЯ ПОДАВЛЕНИЯ КОКСООБРАЗОВАНИЯ В ПЕЧАХ ДЛЯ ПРОВЕДЕНИЯ ТЕРМИЧЕСКОГО КРЕКИНГА

Данное изобретение относится к комбинации соединений и к способу, использующему такую комбинацию, полезную для уменьшения или предотвращения коксообразования в печах для проведения термического крекинга, использующих водяной пар в крекинг-печи для получения этилена. Комбинация состоит из одного или нескольких соединений, описываемых формулой R-Sx-R', где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил, а х=1-5, и одного или нескольких соединений, выбираемых из следующей группы:

, где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил; и

, где R представляет собой Н, алкил, а R' и R'' представляют собой алкил с количеством атомов углерода от 1 до 24. Изобретение позволяет уменьшить или предотвратить коксообразование в печах. 2 н.п. ф-лы, 2 табл.

Формула изобретения RU 2 258 731 C2

1. Комбинация, полезная для уменьшения или предотвращения коксообразования в печах для проведения термического крекинга, таких как использующие водяной пар крекинг-печи для получения этилена, причем комбинация состоит из

(A) одного или нескольких соединений, описываемых формулой

R-Sx-R',

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил, а х=1-5; и

(B) одного или нескольких соединений, выбираемых из следующей группы:

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил;

где R и R' независимо представляют собой Н, алкил, прямоцепной или разветвленный, с количеством атомов углерода от 1 до 24, арил; и

где R представляет собой Н, алкил, а R' и R'' представляют собой алкил с количеством атомов углерода от 1 до 24.

2. Улучшенный способ получения олефиновых соединений в результате введения комбинации по п.1 в поток подвергаемого крекингу углеводородного сырья или в другой исходный поток перед попаданием любого из потоков в печь для проведения термического крекинга.

Приоритет по пунктам:

28.07.2000 по пп.1, 2;15.06.2001 по пп.1, 2.

Документы, цитированные в отчете о поиске Патент 2005 года RU2258731C2

US 4319063 А, 09.03.1982
US 6022472 А, 08.02.2000
СПОСОБ СЕРТИФИКАЦИОННЫХ ИСПЫТАНИЙ КОРПУСА НА НЕПРОБИВАЕМОСТЬ ПРИ РАЗРУШЕНИИ ДИСКА РОТОРА СТАРТЕРА ГТД 2015
  • Каримбаев Камалиддин Джамолдинович
  • Сапронов Дмитрий Владимирович
RU2607145C1
Пиролиз этана с добавкой 0,01% диметилсульфоксида на промышленной установке Э-100
СТАРШОВ И.В
и др
Азербайджанское нефтяное хозяйство
Гребенчатая передача 1916
  • Михайлов Г.М.
SU1983A1

RU 2 258 731 C2

Авторы

Линдстром Майкл Дж.

Даты

2005-08-20Публикация

2001-07-27Подача