Группа изобретений относится к области получения ионообменных волокон со специальными свойствами, которые могут быть использованы в качестве сорбента или как составляющая сорбента для очистки жидких сред, преимущественно природных и сточных вод.
Ионообменные волокна на основе полиакрилонитрильных (ПАН) волокон получают различными способами.
Для образования карбоксильных групп у полиакрилонитрила и получения катионообменных волокон на его основе используют способ химических превращений - омыление щелочью в присутствии сшивающего агента. Отсутствие сшивающего агента может привести к деструкции ПАН волокон. Для практического применения в качестве сшивающего агента рекомендуют использовать гидразинсодержащие соединения, воздействие которых существенно влияет на набухаемость, увеличение обменной емкости и прочностные характеристики волокон. Указанный способ в основном проводят при повышенной температуре в течение 80-150 минут.
Известные в уровне техники процессы получения ионообменных волокон, описанные в а.с. СССР №188617, МКИ D 01 F 11/04, 1966; №586207, МКИ D 01 F 11/04, 1978; п.п. РФ №1051989, МКИ D 01 F 11/04, 1995; №2044748, МКИ C 08 J 5/22, 1995, книга "Волокна с особыми свойствами" под редакцией Л.А.Вольфа, М.: Химия, 1980, с.78-79, обладают рядом недостатков, такими как многостадийность и, чаще всего, большая продолжительность проведения процесса или/и значительный расход реагентов, один из которых (гидразинсодержащее соединение) обладает высокой токсичностью. Большой расход реагентов, соответственно, приводит к удорожанию процесса и решению проблем, связанных с очисткой сточных вод.
Упрощения процесса изготовления катионообменых волокон достигают путем одностадийной обработки полиакрилонитрильного волокна.
Известный способ одностадийной обработки, заключающийся в обработке полиакрилонитрильного волокна в ванне, составленной смешением раствора едкого натра концентрацией 100-120 г/л и соли гидразина той же концентрации в соотношении 1:1 в течение от 15 до 150 мин при 95-100°С, отжиме, промывке волокна и последующей сушке при 20-40°С, дает возможность получить сорбент с высокой обменной емкостью ("Волокна с особыми свойствами" под редакцией Л.А.Вольфа, М.: Химия, 1980, с.79).
Известен способ одностадийной обработки свежесформованного полиакрилонитрильного волокна раствором, содержащим 2,0-3,0% щелочи натрия, 0,5-2,0% сульфата гидразина и 0,2-4,0% диметилэтил-(бутил)-октадециламмонийхлорида или триметилцетиламмониййодида при температуре 96-98°С по а.с. СССР №1032052, МКИ D 01 F 11/04, 1983. Полученные указанным способом ионообменные волокна обладают высокими сорбционными свойствами по отношению к микроэлементам и достаточно высокими прочностными характеристиками.
Известен способ получения хемосорбционного карбоксилсодержащего волокна обработкой полиакрилонитрильного волокна водным раствором, содержащим 8-15 мас.% гидразина и 1,0-2,0 мас.% гидроксида натрия. Обработку волокна проводят при температуре 90-100°С в течение 120-150 мин. Затем промывают при комнатной температуре в течение 15-20 мин 5-7 раз и сушат при температуре 80-90°С до влажности не более 10 мас.%.
Данные режимы обработки полиакрилонитрильного волокна позволяют получать ионообменные волокна с повышенными прочностными характеристиками - разрывная прочность волокна 13,5-16,3 сН/текс и статической обменной емкостью 5,5-5,8 мг·экв/г и осуществлять технологический процесс, используя промышленное волокно нитрон (патент №2102544, РФ, МКИ D 01 F 11/04, 1998 - прототип).
Полученные вышеописанными способами катионообменные волокна, связывающие металлы по механизму ионного обмена, обладают не достаточной способностью к избирательной сорбции в присутствии солевого фона. Использование большого количества гидразина может привести к большому содержанию остаточного гидразина ввиду того, что невозможно варьировать соотношение кислотных и основных групп.
Известно, что полиакрилонитрильные волокна, модифицированные гидроксиламином приобретают способность к ионному обмену и к комплексообразованию. Обработку полиакрилонитрильного волокна проводят солянокислым гидроксиламином в присутствии гидролизующего агента, в качестве которого используют карбонат натрия. Температура ванны составляет 90°С. Для увеличения анионообменной емкости полиакрилонитрильных волокон, обработанных гидроксиламином и повышения хемостойкости анионообменных волокон в реакционную смесь добавляют гидразин ("Волокна с особыми свойствами" под редакцией Л.А.Вольфа, М.: Химия, 1980, с.90-91).
Предложенным способом получают материал, связывающий катионы металлов по чистому механизму комплексообразования. Между тем известно, что наибольшую силу связывания тяжелых металлов проявляют комплексы с компенсированным зарядом катионов, когда наряду с незаряженными центрами в комплекс входят анионы. Т.е. амфотерные ионообменные волокна, обладающие способностью к селективной сорбции, регулируемой характером и соотношением групп, образующих хелатные комплексы с ионами металлов.
С целью получения таких ионообменных волокон проводят омыление полиакрилонитрильных волокон растворами гидроксида натрия в присутствии известных солей гидразина и тиосемикарбазида ("Волокна с особыми свойствами" под редакцией Л.А.Вольфа, М.: Химия, 1980, с.97). Полная обменная емкость синтезированных волокон-полиамфолитов достигала 6,0-6,5 мг-экв/г, а сорбционная обменная емкость по карбоксильным и аминным группам составляла соответственно 3,0-4,5 и 3,0-2,0 мг-экв/г. Указанные волокна обладают высокой сорбционной способностью по отношению к ионам меди. При рН растворов CuSO4 от 2,8 до 4,0 они сорбируют 6,0-10,0 мг-экв/г ионов меди в течение 5-10 мин. Однако в процессе варки полученные волокна, достигая высоких емкостей, сильно набухают, превращаясь в гелеобразную массу, что в дальнейшем затрудняет процесс их переработки.
Задачей заявляемой группы изобретений и достигаемым техническим результатом является разработка нового способа получения ионообменного волокна на основе полиакрилонитрильного волокна, обеспечивающего качественные характеристики волокна при сокращении расхода исходных реагентов.
Дополнительной задачей является достижение стабильности процесса и получение ионообменного волокна на основе полиакрилонитрильного волокна с заданным количеством хелатных сорбционных центров путем варьирования соотношения кислотных и основных групп в процессе гидролиза. Хелатные ионообменные центры в материале образуются за счет ионных пар основная группа - кислотная группа. При взаимодействии такой пары с ионами d-элементов образуются прочные комплексы
2R'COO-...HN+R"+Cu2+-->Cu(R'COO)2(NR")2
где R' и R" - фрагменты матрицы полиакрилонитрила. В условиях избытка кислотных групп над основными в условиях щелочного гидролиза в водной среде количество хелатных сорбционных центров будет определяться количеством основных групп.
Заявляемая группа изобретений обеспечивает получение достаточно чистого, высокоселективного ионообменного волокна, позволяющего избирательно чистить воду от ионов тяжелых металлов, в том числе, что особенно важно, питьевую воду.
Поставленная задача достигается путем проведения щелочного гидролиза полиакрилонитрильного волокна в присутствии гидразина при повышенной температуре с дополнительной обработкой волокна активным агентом, сопровождающейся деградацией хромофорных групп волокна.
В уровне техники известно, что остатки гидразина удаляются с волокна при тщательной промывке. Ионообменные полиакрилонитрильные волокна, полученные по заявляемому способу, используются в основном для очистки питьевой воды, поэтому для таких волокон не достаточно одной промывки. Создается необходимость удаления из волокон производных гидразина, которые потенциально могут подвергаться гидролизу (например, в процессе использования волокон) с выделением малых количеств гидразина. Удаление из полимерной матрицы остаточного гидразина и/или его производных, которые закреплены на матрице, происходит за счет ионообменных или/и ковалентных связей. Слабосвязанный гидразин закреплен на матрице в составе групп
Присоединение гидразина в условиях щелочного гидролиза к полиакрилонитрилу приводит к образованию сопряженных двойных связей, обладающих хромоформными свойствами, т.е. к образованию хромоформных групп. В процессе разрушения гидразидных групп разрушается также цепочка сопряженных двойных связей, что проявляется в осветлении волокна.
По второму варианту ионообменное волокно получают щелочным гидролизом полиакрилонитрильного волокна в присутствии гидразина при повышенной температуре, причем реакцию гидролиза проводят в концентрированном растворе соли щелочного металла и слабой кислоты с последующей обработкой волокна активным агентом, сопровождающейся деградацией хромофорных групп волокна. В качестве соли щелочного металла и слабой кислоты используют карбонат натрия, ацетат натрия, ацетат калия или карбонат калия. В качестве активного агента по первому и второму вариантам используют сильный окислитель - перекись водорода или гипохлорит кальция. Или в качестве активного агента используют водяной пар и обработку проводят при повышенном давлении. Также дополнительную обработку можно проводить в воде СВЧ излучением.
Присутствие солевого фона в рабочем растворе ограничивает набухание гидролизованного ПАН-волокна таким образом, что его текстильная структура сохраняется даже по достижении высоких обменных емкостей. Это позволяет снизить содержание сшивающего агента - гидразина - в рабочем растворе до количеств, необходимых для достижения требуемой обменной емкости по основным группам, а значит - необходимой емкости по хелатным центрам. Кроме того, процесс синтеза может продолжаться сколь угодно долго без разрушения волокна. Таким образом, содержание не прореагировавшего гидразина в смывах может быть заметно снижено. Дополнительным фактором стабилизации процесса является образование буфера щелочь-соль слабой кислоты, что несколько замедляет процесс гидролиза.
Поставленная задача подтверждается приведенными примерами.
Пример 1.
Гидролиз ПАН-волокна проводили раствором следующего состава: 2 г/л по N2H4; 4 г/л по NaOH. Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. После завершения гидролиза волокно промывают до рН 7, отжимают и сушат при температуре 80°С до постоянного веса. Цвет материала - желто-коричневый. В водных сливах с материала гидразин не определяется - материал не содержит свободного гидразина. Таким образом, молекулы гидразина закреплены в матрице ковалентными или ионообменными связями.
Приведенные ниже примеры 2 и 3 характеризуют состояние материала, сваренного без дополнительной стадии обработки. В материале содержится незначительное количество гидразидных групп, которые могут быть разрушены действием соляной кислоты.
Пример 2.
Гидролиз ПАН-волокна проводили раствором следующего состава: 2 г/л по N2H4; 4 г/л по NaOH.
Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна.
После завершения гидролиза волокно промывают до рН 7, отжимают и сушат при температуре 80°С до постоянного веса. Цвет материала - желто-коричневый.
Метод определения содержания гидролизуемых производных гидразина приведен ниже.
Отмытый образец материала подвергали гидролизу действием 1М HCl в течение 1 часа. В процессе кислотного гидролиза гидразидные группы в материале разрушаются, в результате чего в раствор выходит свободный гидразин, по количеству которого можно судить о содержании гидролизующихся гидразидных групп в материале. В смыве определяли содержание гидразина фотометрическим методом (длина волны 455 нм) по окраске продукта реакции гидразина с парадиметиламинобензальдегидом. В результате анализа содержание гидролизуемых гидразидных групп составило 300 мкг/г материала.
Пример 3.
Материал, полученный и обработанный по примеру 2, подвергли вторичному воздействию HCl. Количество гидразина, смытое при повторном гидролизе, составило менее 10 мкг/г. Пример 3 подтверждает достоверность определения гидролизующихся гидразидных групп по методу, описанному в примере 2.
Пример 4.
Образец материала, полученного по примеру 2, после промывки подвергли воздейстию водяного пара при повышенном давлении в автоклаве. Давление пара в автоклаве составляло 2 атм, время обработки - 20 минут.
Материал после обработки имеет белый цвет.
Содержание гидролизующихся гидразидных групп, определенное по примеру 2, составило менее 10 мкг/г.
Пример 5.
Образец материала, полученного по примеру 2, после промывки подвергли нагреванию в микроволновой печи (СВЧ обработка). При этом образец находился в дистиллированной воде в открытой емкости. Время обработки с момента закипания воды составило 5 минут.
Материал после обработки имеет светло-желтый цвет. Содержание гидролизующихся гидразидных групп, определенное по примеру 2, составило менее 10 мкг/г.
Пример 6.
Образец материала, полученного по примеру 2, обработали 10% раствором перекиси водорода. Количество перекиси водорода составило 30 мг на 1 г материала, время обработки - 1 час.
Материал после обработки имеет светло-желтый цвет. Содержание гидролизующихся гидразидных групп, определенное по примеру 2, составило 25 мкг/г.
Пример 7.
Образец материала, полученного по примеру 2, обработали 10% раствором гипохлорита кальция. Количество гипохлорита кальция составило 50 мг на 1 г материала, время обработки - 1 час.
Материал после обработки имеет светло-желтый цвет. Содержание гидролизующихся гидразидных групп, определенное по примеру 2, составило 15 мкг/г.
Пример 8.
Гидролиз ПАН-волокна проводили раствором следующего состава: 100 г/л по На2СО3; 0.2 г/л по N2H4; 4 г/л по NaOH.
Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. Таким образом, гидразин содержится в реакционной смеси в количестве 0.625 ммоль на 1 г исходного волокна.
После завершения гидролиза волокно промывают до рН 7, обрабатывают перекисью водорода по примеру 6, отжимают и сушат при температуре 80°С до постоянного веса.
Пример 9.
Гидролиз ПАН-волокна проводили раствором следующего состава: 100 г/л по Na2CO3; 0.4 г/л по N2H4; 4 г/л по NaOH.
Полиакрилонитрильое волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. Таким образом, гидразин содержится в реакционной смеси в количестве 1.25 ммоль на 1 г исходного волокна.
После завершения гидролиза волокно промывают до рН 7, обрабатывают перекисью водорода по примеру 6, отжимают и сушат при температуре 80°С до постоянного веса.
Пример 10.
Гидролиз ПАН-волокна проводили раствором следующего состава: 100 г/л по Na2CO3; 0.6 г/л по N2Н4; 4 г/л по NaOH.
Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. Таким образом, гидразин содержится в реакционной смеси в количестве 1.875 ммоль на 1 г исходного волокна.
После завершения гидролиза волокно промывают до рН 7, обрабатывают перекисью водорода по примеру 6, отжимают и сушат при температуре 80°С до постоянного веса.
Пример 11.
Гидролиз ПАН-волокна проводили раствором следующего состава: 100 г/л по Na2CO3; 0.4 г/л по N2H4; 2 г/л по NaOH.
Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. Таким образом, гидразин содержится в реакционной смеси в количестве 1.25 ммоль на 1 г исходного волокна.
После завершения гидролиза волокно промывают до рН 7, обрабатывают перекисью водорода по примеру 6, отжимают и сушат при температуре 80°С до постоянного веса.
Пример 12.
Гидролиз ПАН-волокна проводили раствором следующего состава: 100 г/л по CH3COONa (ацетат натрия); 0.2 г/л по N2H4; 4 г/л по NaOH.
Полиакрилонитрильное волокно обрабатывают указанным раствором при температуре 100°С в течение 60 мин. Соотношение раствора и волокна составило 1 л раствора на 10 г волокна. Таким образом, гидразин содержится в реакционной смеси в количестве 1.25 ммоль на 1 г исходного волокна.
После завершения гидролиза волокно промывают до рН 7, обрабатывают перекисью водорода по примеру 6, отжимают и сушат при температуре 80°С до постоянного веса.
Данные по свойствам ионообменных волокон, полученных по заявляемому способу, приведены в таблице 1
Пример 13.
Сорбционную колонну диаметром 30 мм и высотой 70 мм заполняли полученными по примеру 2 амфотерными ионообменными волокнами на основе полиакрилонитрильных волокон. Количество волокна в колонне составило 10 г. Через колонну пропускали 10 л модельного раствора, содержащего медь в количестве 5 мг/л, со скоростью 50 мл/мин. В каждом литре фильтрата определяли содержание меди. Результаты анализа представлены в таблице 2.
Пример 14. Эксперимент проводили по примеру 13, но в качестве модельного использовался раствор, содержащий соли меди (5 мг/л) и кальция в качестве солевого фона (40 мг/л). Результаты приведены в таблице 3.
Пример 15.
Использовали сорбционную колонку по Примеру 13. Через колонну пропускали модельный раствор, содержащий 0.500 мг/л свинца в форме нитрата. В каждом литре фильтрата определяли содержание свинца. Результаты анализа представлены в таблице 4.
Пример 16. Эксперимент проводили по примеру 13, но в качестве модельного использовался раствор, содержащий соли свинца (0.500 мг/л) и кальция в качестве солевого фона (40 мг/л). Результаты приведены в таблице 5.
Емкостные свойства ионообменных волокон, полученных по описанному методу.
Эффективность очистки модельного раствора сорбционной колонной, содержащей амфотерный материал.
Эффективность очистки модельного раствора сорбционной колонной, содержащей амфотерный материал.
Эффективность очистки модельного раствора сорбционной колонной, содержащей амфотерный материал.
Эффективность очистки модельного раствора сорбпионной колонной, содержащей амфотерный материал.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения ионообменного полиакрилонитрильного волокнистого материала | 1978 |
|
SU726227A1 |
СПОСОБ ПОЛУЧЕНИЯ ИОНООБМЕННОГО ВОЛОКНА | 2000 |
|
RU2194809C2 |
Способ получения ионообменного полиакрилонитрильного волокна | 1982 |
|
SU1032052A1 |
СПОСОБ ПОЛУЧЕНИЯ ХЕМОСОРБЦИОННОГО КАРБОКСИЛСОДЕРЖАЩЕГО ВОЛОКНА | 1996 |
|
RU2102544C1 |
СПОСОБ ПОЛУЧЕНИЯ ТРИКОТАЖНОГО МАТЕРИАЛА С КАТАЛИТИЧЕСКИМИ СВОЙСТВАМИ | 2004 |
|
RU2265032C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ВОЛОКНИСТОЙ СТРУКТУРЫ | 2003 |
|
RU2260019C1 |
Способ получения ионообменной бумаги | 1981 |
|
SU990766A1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕКСТИЛЬНОГО ПОЛИМЕРНОГО КАТАЛИЗАТОРА | 2004 |
|
RU2266304C1 |
Способ получения ионообменного полиакрилонитрильного волокна | 1983 |
|
SU1512984A1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕКСТИЛЬНОГО ОБЪЕМНОГО ВОЛОКНИСТОГО КАТАЛИЗАТОРА | 1998 |
|
RU2145653C1 |
Изобретение относится к области получения ионообменных волокон со специальными свойствами, которые могут быть использованы в качестве сорбента или как составляющая сорбента для очистки жидких сред, преимущественно природных и сточных вод. Способ заключается в проведении щелочного гидролиза полиакрилонитрильного волокна в присутствии гидразина при повышенной температуре с дополнительной обработкой волокна активным агентом, сопровождающейся деградацией хромофорных групп волокна. Или ионообменное волокно получают щелочным гидролизом полиакрилонитрильного волокна в присутствии гидразина при повышенной температуре, причем реакцию гидролиза проводят в концентрированном растворе соли щелочного металла и слабой кислоты с последующей обработкой волокна активным агентом, сопровождающейся деградацией хромофорных групп волокна. Изобретение обеспечивает получение ионообменного волокна на основе полиакрилонитрильного волокна с качественными характеристиками волокна при сокращении расхода исходных реагентов. При этом достигается стабильность процесса и получение ионообменного волокна на основе полиакрилонитрильного волокна с заданным количеством хелатных сорбционных центров путем варьирования соотношения кислотных и основных групп в процессе гидролиза. 2 н. и 16 з.п. ф-лы, 5 табл.
16 Способ по п.9, отличающийся тем, что обработку проводят в воде СВЧ-излучением.
СПОСОБ ПОЛУЧЕНИЯ ХЕМОСОРБЦИОННОГО КАРБОКСИЛСОДЕРЖАЩЕГО ВОЛОКНА | 1996 |
|
RU2102544C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕКСТИЛЬНОГО ОБЪЕМНОГО ВОЛОКНИСТОГО КАТАЛИЗАТОРА | 1998 |
|
RU2145653C1 |
ЕР 0722004 А, 17.07.1990 | |||
Прямоточный котел | 1983 |
|
SU1112167A1 |
"Волокна с особыми свойствами" под редакцией Л.А.ВОЛЬФА, М, Химия, 1980, с.78-79, 90-91, 97. |
Авторы
Даты
2005-10-20—Публикация
2004-04-08—Подача