Способ выщелачивания палладия из шламов относится к области переработки оборотных продуктов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, и может быть использован в производстве стабильных изотопов при переработке узлов камер улавливания магнитных сепараторов и в металлургии палладия при переработке руд и концентратов, содержащих окисленный и самородный палладий, и в технологии утилизации палладийсодержащих катализаторов, а также в аналитической и препаративной химии.
Известен способ [RU 2211251 C2 (МПК С 22 В 11/00), опубл. 27.08.2003 г.] извлечения металлов платиновой группы, в том числе и палладия в виде металлической, оксидной и металл-оксидной форм, из анодных шламов, образующихся при электрорафинировании меди. Способ включает растворение шлама в азотной кислоте, потенциостатический электролиз на пористом электроде из углеродного материала и концентрирование оставшегося металла в растворе на твердом экстрагенте с возвратом реэкстракта в цикл электролитического выделения металлов. Данный способ обеспечивает, используя азотную кислоту, высокую степень выщелачивания палладия из анодных шламов электрорафинирования меди, полноту последующего извлечения ионов металла из полученных растворов выщелачивания и высокую степень разделения палладия и примесей.
Недостатком известного способа - прототипа - является то, что метод кислотного выщелачивания не обеспечивает полного вскрытия палладия большого ряда окисленных шламов, что приводит к потере ценного продукта. Полнота вскрытия палладийсодержащих продуктов особенно важна в технологии производства стабильных изотопов, так как потери даже незначительного количества изотопообогащенного материала приводят к значительному снижению экономической эффективности технологии из-за высокой стоимости процесса разделения изотопов. Кроме того, данный метод не обеспечивает селективного выщелачивания металлов платиновой группы. Следовательно, для извлечения палладия необходимо проводить дополнительные операции подготовки и переработки полученных растворов, а это ведет к увеличению расхода реагентов и числа операций, так как любой процесс выщелачивания, как правило, связан с последующими операциями фильтрации, промывки осадка от маточного раствора. Это ведет не только к аппаратурному усложнению процесса и увеличению длительности цикла, но и разубоживанию растворов и потерям целевого компонента.
Технической задачей изобретения является устранение указанных недостатков и обеспечить существенное повышение степени выщелачивания палладия из шламов за одну стадию. Получение чистых растворов палладия при его десорбции из анионита, сокращение числа операций последующей технологии переработки растворов с целью получения палладия или его соединений приведет к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия.
Технический результат достигается путем выщелачивания палладия из шламов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, растворами азотной кислоты, при этом выщелачивание палладия осуществляют растворами азотной кислоты (120-190 г/л) с добавлением нитрата аммония (160-240 г/л) в присутствии слабоосновного эпоксиполиаминного типа анионита АН-31 с последующим отделением анионита от пульпы, промывкой его водой и десорбцией палладия из анионита раствором аммиака.
Выбор концентраций реагентов в растворе и анионита для проведения сорбционного выщелачивания палладия обусловлен тем, что в этих условиях обеспечивается не только высокая степень извлечения палладия из шламов (более 99%), но и происходит отделение его от примесей железа, меди, цинка, никеля, титана, хрома, марганца, золота, серебра и т.д. При использовании сорбционного выщелачивания палладия происходит вскрытие ряда так называемых упорных шламов, из которых палладий практически не выщелачивался растворами азотной кислоты, предлагаемыми по известному способу.
Сопоставление эффективности предложенного и ранее известного способа - прототипа приведено в примерах.
Пример 1. Выщелачивание палладия проводили из шлама со средним содержанием палладия 1%. Эксперимент проводили в следующих условиях. Навеска шлама, измельченного до размера частиц менее 0,1 мм, в количестве 5 г заливалась 100 мл раствора с определенной концентрацией реагентов. Параллельно проводили аналогичный эксперимент по выщелачиванию палладия в присутствии анионита АН-31, который вносился в приготовленный раствор. Для проведения выщелачивания использовалась фракция смолы с размером зерен более 0,5 мм, что обеспечивало в последующем легкое отделение смолы от пульпы. Выщелачивание проводили при постоянном перемешивании воздухом в течение 24 часов. Данный способ перемешивания предотвращал механическое разрушение анионита. После окончания выщелачивания смолу отделяли от пульпы на сите из полипропилена с размером ячеек 0,3 мм. Смолу промывали 100 мл воды. Промывные воды объединяли с пульпой. Далее пульпу подвергали фильтрации. Осадок промывали водой до нейтрального значения рН фильтрата. Промывные воды объединяли с маточным раствором. Осадок высушивали. Фильтрат упаривали до исходного объема раствора. После этого отбирали пробу смолы для анализа на палладий. Анализу на содержание палладия подвергались высушенный шлам и фильтрат. Кроме того, для проверки полученных результатов палладий из анионита десорбировали 25% раствором аммиака, разбавленного в 2 раза дистиллированной водой. Элюаты также анализировались на содержание палладия. Результаты, полученные в результате проведения экспериментов, представлены в табл.1.
Как следует из данных, представленных в табл.1, степень выщелачивания палладия без анионита значительно ниже, чем без его добавления в пульпы. Причем палладий плохо выщелачивался концентрированной азотной кислотой и смесью соляной и азотной кислот («царской водкой»). Однако не во всех растворах происходит полное сорбционное выщелачивание. При концентрации азотной кислоты свыше 3 М наблюдается частичное разрушение анионита, что наблюдалось по убыли массы смолы. Потеря массы анионита после 24 часов контакта с 4 М раствором HNO3+3 М NH4NO3 составила 0,95 г (в пересчете на вес сухого анионита в NO3-форме), что составло около 10% от исходной навески. В царской водке анионит практически полностью разложился.
С другой стороны, в области концентраций реагентов 2-3 М по HNO3 и 2-3 М по NH4NO3 при добавлении анионита АН-31 в пульпу достигается практически полное выщелачивание палладия, в то время как без анионита степень выщелачивания палладия составляет лишь 65-70%.
Таким образом, понижение концентрации азотной кислоты в выщелачивающих растворах ниже 2 М приводит к снижению степени сорбционного выщелачивания, а увеличение ее содержания свыше 3 М способствует интенсивному разрушению анионита.
Пример 2. 5 г измельченного палладийсодержащего шлама заливали 100 мл раствора, содержащего 130 г/л азотной кислоты и 150 г/л нитрата аммония. В пульпу вводили 15 мл смолы АН-31. В шламе количество палладия составляло 0,168 г. После выщелачивания в течение 24 часов смолу отделили от пульпы и промыли водой. Далее палладий из смолы десорбировали 12% раствором аммиака. Объем полученного элюата составил 200 мл. Элюат проанализировали на содержание примесей. Полученные данные представлены в табл.2. Параллельно проводилось выщелачивание палладия раствором 2 М HNO3, содержащим 2 М NH4NO3. После выщелачивания осадок отделили от раствора фильтрацией и также проанализировали на содержание примесей (табл.2).
Таблица 2 Содержание палладия и примесей в растворах, полученных после выщелачивания палладия по известному способу и в элюатах после сорбционного выщелачивания шламов
Содержание основных компонентов в исходном шламе, %: Pd - 3,36; Cu - 34; Fe - 23,1; Cr - 4,9; Ti - 0,1; Zn - 1,9; Cd - 0,1; Al - 8,7
Полученные данные показали, что при высокой степени выщелачивания палладия из шлама 99,4% (по прототипу 57%) элюаты, полученные после десорбции палладия из анионита, содержат незначительное количество примесей. Металл, который был получен из растворов восстановлением гидразином, содержал примесей менее 0,1%.
Пример 3. Для определения необходимого количества смолы сорбционного выщелачивания палладия в пульпы вводились различные навески анионита АН-31. Исходная пульпа готовилась как и в предыдущем примере. Навеска шлама в количестве 5 г заливалась 100 мл раствора с концентрацией азотной кислоты и нитрата аммония по 2 М каждого реагента. Затем в пульпы добавляли анионит АН-31 в количестве 1, 3, 5, 8, 10 г. После выщелачивания смола отделялась от пульпы, и в ней определяли содержание палладия. Как описано в примере 1, анализировались растворы и шлам. По полученным результатам определяли степень выщелачивания палладия (табл.3). Из приведенных в табл.3 данных следует, что при введении 1 г анионита на 30 мг палладия степень выщелачивания палладия достигает более 98%.
Пример 4. Для установления оптимального соотношения Ж:Т в пульпах была проведена серия экспериментов, в которых на 5 г шлама и 5 г ионита были взяты различные объемы выщелачиваемого раствора (25 мл, 50 мл, 75 мл, 100 мл) с концентрацией реагентов, указанной в примере 3. Результаты опытов сведены в табл.4.
Из данного примера следует, что минимальное соотношение Ж:Т должно быть 5:1. Дальнейшее уменьшение соотношения жидкой и твердой фазы приводит к снижению степени выщелачивания палладия. Кроме того, при низких значениях соотношения Ж:Т осложняется процесс отделения смолы от пульпы.
Увеличение соотношения Ж:Т свыше 20 нецелесообразно, так как ведет к дополнительному расходу реагентов. Отсюда следует, что оптимальное соотношение Ж:Т при выщелачивании, которое обеспечивает высокую степень извлечения палладия из шламов и не приводит к избыточному расходу реагентов, лежит в пределах 1:10÷1:20.
Таким образом, использование предлагаемого способа позволяет:
а) существенно повысить степень выщелачивание палладия из шламов за одну стадию;
б) получать чистые растворы палладия при его десорбции из анионита;
в) сократить число операций последующей технологии переработки растворов с целью получения палладия или его соединений, что в свою очередь приводит к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ | 2008 |
|
RU2386710C1 |
СПОСОБ ЙОД-ЙОДИДНОЙ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ | 2019 |
|
RU2702250C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ И/ИЛИ ПАЛЛАДИЯ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ НА НОСИТЕЛЯХ ИЗ ОКСИДА АЛЮМИНИЯ | 2014 |
|
RU2553273C1 |
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ | 2009 |
|
RU2394109C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ НИКЕЛЬ-КОБАЛЬТОВОГО СЫРЬЯ | 2009 |
|
RU2393251C1 |
Способ извлечения редкоземельных элементов из фосфогипса | 2017 |
|
RU2663512C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ, ПРЕИМУЩЕСТВЕННО НИКЕЛЯ И КОБАЛЬТА, ИЗ ОКИСЛЕННЫХ РУД | 2013 |
|
RU2568223C2 |
СПОСОБ ВЫДЕЛЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ | 2002 |
|
RU2238244C2 |
СПОСОБ ОТДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ПАЛЛАДИЯ (II) ОТ СЕРЕБРА (I), ЖЕЛЕЗА (III) И МЕДИ (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ | 2019 |
|
RU2694855C1 |
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ | 2011 |
|
RU2484164C1 |
Изобретение относится к области переработки оборотных продуктов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, и может быть использовано в производстве стабильных изотопов при переработке узлов камер улавливания магнитных сепараторов и в металлургии палладия при переработке руд и концентратов, содержащих окисленный и самородный палладий, и в технологии утилизации палладийсодержащих катализаторов, а также в аналитической и препаративной химии. Выщелачивание палладия из шламов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, проводят растворами азотной кислоты в присутствии нитрата аммония в присутствии слабоосновного анионита эпоксиполиаминного типа АН-31 с концентрацией азотной кислоты в выщелачивающем растворе 120-190 г/л и нитрата аммония 160-240 г/л, с последующим отделением смолы от пульпы, промывкой анионита водой от маточного раствора и десорбцией палладия из анионита. Техническим результатом является то, что существенно повышается степень выщелачивания палладия из шламов за одну стадию; получают чистые растворы палладия при его десорбции из анионита; сокращается число операций последующей технологии переработки растворов с целью получения палладия или его соединений, что в свою очередь приводит к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия. 3 з.п. ф-лы, 4 табл.
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ ИЗ АНОДНЫХ ШЛАМОВ | 2001 |
|
RU2211251C2 |
СПОСОБ ПОЛУЧЕНИЯ СЕРЕБРА ИЗ ЕГО СПЛАВОВ | 1996 |
|
RU2100484C1 |
СБОРНАЯ ЖЕЛЕЗОБЕТОННАЯ ПОДПОРНАЯ СТЕНКА | 1998 |
|
RU2135695C1 |
Приспособление для выштамповывания стеклянных подпятников | 1930 |
|
SU27769A1 |
US 4382845 A, 10.05.1983. |
Авторы
Даты
2006-03-10—Публикация
2004-08-10—Подача