Изобретение относится к области радиохимической технологии, в частности к переработке радиоактивных отходов от обращения с отработавшим ядерным топливом (ОЯТ) и/или может быть использовано при экстракционном выделении цветных металлов.
Экологическая безопасность требует, чтобы долгоживущие радионуклиды, образующиеся при переработке ОЯТ, были переведены в формы, препятствующие их распространению в окружающую среду при хранении. При этом необходимо обеспечить выделение урана, плутония и трансплутониевых элементов (ТПЭ) - в особенности америция и кюрия.
Наиболее распространенным способом переработки жидких высокоактивных отходов (ВАО) является жидкостная экстракция. Известен стандартный ПУРЕКС-процесс [Reactor Handbook, Sec.Edition, Ed. S.M. Stoller, R.B. Richards, v. 2 Fuel reprocessing, p.101 (1961) Interscience publ. Inc., NY], обеспечивающий выделение из кислых растворов урана и плутония экстракцией трибутилфосфатом. В ПУРЕКС-процессе используется экстракционная смесь 1,1 М ТБФ в предельных углеводородах, которая хорошо экстрагирует уран и плутоний, но очень слабо извлекает все другие элементы.
Известен также ТРУЭКС-процесс [Е.Р. Horwitz, et al., Solv. Extr. Ion Exch., v.3(1&2), p. 75, 1985], предусматривающий выделение из кислых растворов америция и кюрия, а также редкоземельных элементов (РЗЭ). В ТРУЭКС-процессе используется экстракционная смесь - 0,15-0,25 М фенилоктил-N,N,-диизобутилкарбамоилфосфиноксид + 1,1-1,5 М ТБФ в предельных углеводородах, с помощью которой можно извлечь трехвалентые элементы и небольшие количества урана и плутония из кислых растворов.
Наиболее близкой по составу к заявляемой экстракционной смеси является экстракционная смесь, используемая в способе экстракции РЗЭ, ТПЭ, урана и плутония дифенилкарбамоилфосфиноксидом во фторированных разбавителях [Мясоедов Б.Ф., Чмутова М.К., Бабаин В.А., Шадрин А.Ю., Попик В.П., Прибылова Г.А., Дзекун Е.Г. А.С. №1524519 "Способ экстракционного извлечения редкоземельных и актинидных элементов" БИ №14, 1994]. В этом способе в качестве экстракционной смеси используется 0,05-0,3 М раствор дифенил-N,N-дибутилкарбамоилфосфиноксида в метанитробензотрифториде или орто-нитрофенилтетрафторэтиловом эфире - прототип.
Недостатком прототипа и аналога является то, что в случае присутствия в водной фазе заметных количеств урана (концентрация урана более 5 г/л) в органической фазе образуется осадок сольвата урана с карбамоилфосфиноксидом, при этом проведение экстракции в динамическом режиме становится невозможным.
Задачей настоящего изобретения является разработка экстракционной смеси, которой можно было бы экстрагировать одновременно не только ТПЭ и РЗЭ, но и уран с плутонием.
Поставленная задача решается использованием экстракционной смеси, содержащей бидентатный фосфорорганический экстрагент (дигексил-N,N-диэтил карбамоил фосфонат (HexO)2/Et2) - 0,1-1,2 моль/л в бис-тетрафторпропиловом эфире диэтиленгликоля (фторопол 1083).
Тот же технический результат, а именно - возможность экстракции как урана в высоких концентрациях без образования осадка или третьей фазы, так и плутония, РЗЭ и ТПЭ - может быть достигнут при использовании экстракционной смеси, содержащей в качестве экстрагента 0,1-1,2 моль/л фенилоктил-N,N,-диизобутилкарбамоилфосфин-оксида (PhOkt-iBu2), а в качестве разбавителя 1,1-1,5 М ТБФ в метанитробензотрифториде. При сравнении предлагаемой экстракционной смеси (вариантов) с прототипом можно отметить, что предлагаемая экстракционная смесь обеспечивает, так же как и прототип, экстракцию урана, РЗЭ И ТУЭ, из водных кислых растворов различного состава.
Представленные примеры иллюстрируют применение данного способа.
Пример 1
Раствор 30% (HexO)2/Et2 во фторополе - 1083 контактировали с азотнокислым раствором, содержащим нитраты металлов (урана, плутония, америция, европия) при 20°С в течение 3 мин. Коэффициенты распределения приведены на фиг.1 и в табл.1.
Экстракция урана и трансурановых элементов раствором 30% (HexO)2/Et2 во фторополе - 1083 из 2 М азотной кислоты в присутствии уранилнитрата (исходная водная концентрация урана 100 г/л по металлу).
Пример 2
Раствор 30% (HexO)2/Et2 во фторополе-1083 контактировали с азотнокислым раствором, содержащим различные концентрации нитрата уранила при 20°С в течение 3 мин. Коэффициенты распределения приведены на фиг.2.
Пример 3 (прототип)
Раствор 0,2 М фенилоктил-N,N,-диизобутилкарбамоилфосфиноксида +1,1 ТБФ в додекане контактировали с азотнокислым раствором, содержащим различные концентрации нитрата уранила при 20°С в течение 3 мин. При концентрации урана в исходном водном растворе более 10 г/л при экстракции образуется третья фаза, при концентрации урана более 30 г/л выпадают осадки (см. табл.2)
Пример 4 (прототип)
Раствор 0.1 М дифенил-К,Ы,-дибутилкарбамоилфосфиноксида в метанитробензо-трифториде (МНБТФ) контактировали с азотнокислым раствором, содержащим различные концентрации нитрата уранила при 20°С в течение 3 мин. При концентрации урана в исходном водном растворе более 5 г/л при экстракции выпадают осадки.
Сравнение предлагаемых экстракционных смесей с прототипом приведено также в табл.2.
Таким образом, приведенные примеры показывают, что предлагаемая экстракционная смесь извлекает ТПЭ и РЗЭ в присутствии урана и плутония из кислых растворов, в том числе и из растворов с высоким содержанием урана. Экстракционные смеси, используемые в прототипе и аналогах, не позволяют проводить такую экстракцию из-за образования осадков.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭКСТРАКЦИОННОГО ВЫДЕЛЕНИЯ ЦЕЗИЯ, СТРОНЦИЯ, ТЕХНЕЦИЯ, РЕДКОЗЕМЕЛЬНЫХ И АКТИНИДНЫХ ЭЛЕМЕНТОВ ИЗ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2180868C2 |
ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ ИЗВЛЕЧЕНИЯ ТПЭ И РЗЭ ИЗ ВЫСОКОАКТИВНОГО РАФИНАТА ПЕРЕРАБОТКИ ОЯТ АЭС И СПОСОБ ЕЁ ПРИМЕНЕНИЯ (ВАРИАНТЫ) | 2016 |
|
RU2623943C1 |
ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ ИЗВЛЕЧЕНИЯ АКТИНИДОВ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ | 2015 |
|
RU2620583C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЛАНТАНИДОВ И АКТИНИДОВ ИЗ АЗОТНО-КИСЛЫХ РАСТВОРОВ | 2000 |
|
RU2193012C2 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КИСЛЫХ РАСТВОРОВ И ИХ РАЗДЕЛЕНИЯ | 1999 |
|
RU2165653C1 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ ДОЛГОЖИВУЩИХ РАДИОНУКЛИДОВ ИЗ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 2001 |
|
RU2224309C2 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ТПЭ И РЗЭ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ | 1994 |
|
RU2106030C1 |
Способ экстракционного выделения трансплутониевых и редкоземельных элементов | 2021 |
|
RU2774155C1 |
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНЫХ ОТХОДОВ С ФРАКЦИОНИРОВАНИЕМ РАДИОНУКЛИДОВ | 2019 |
|
RU2709826C1 |
ЭКСТРАГЕНТ ДЛЯ ИЗВЛЕЧЕНИЯ АКТИНИДОВ В СТЕПЕНИ ОКИСЛЕНИЯ +4 И +6 ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ | 2009 |
|
RU2400281C1 |
Изобретение относится к области радиохимической технологии. Сущность изобретения: экстракционная смесь для извлечения актинидных элементов из кислых растворов включает раствор бидентатного фосфорорганического экстрагента - в полярном фторированном разбавителе. В качестве полярного фторированного разбавителя она содержит бис-тетрафторпропиловый эфир диэтиленгликоля, а в качестве бидентатного фосфорорганического экстрагента - дигексил-N,N-диэтил карбамоил фосфонат при следующем соотношении компонентов: бидентатный экстрагент 0,1-1,2 моль/л; разбавитель остальное. Экстракционная смесь для извлечения актинидных элементов из кислых растворов может включать в качестве раствора бидентатного фосфорорганического экстрагента фенилоктил - N,N,-диизобутилкарбамоилфосфиноксида в полярном разбавителе. В качестве полярного разбавителя используется смесь метанитробензотрифторида с триалкилфосфатом при следующем соотношении компонентов: бидентатный экстрагент 0,1-1,2 моль/л; триалкилфосфат, например, трибутилфосфат 0,3-1,1 моль/л; метанитробензотрифторид остальное. Преимущества изобретения заключаются в возможности одновременного экстрагирования трансплутониевых, редкоземельных элементов и урана. 2 н.п. ф-лы, 2 табл., 2 ил.
Способ извлечения редкоземельных и актинидных элементов | 1987 |
|
SU1524519A1 |
СПОСОБ ЭКСТРАКЦИОННОГО ВЫДЕЛЕНИЯ ЦЕЗИЯ, СТРОНЦИЯ, ТЕХНЕЦИЯ, РЕДКОЗЕМЕЛЬНЫХ И АКТИНИДНЫХ ЭЛЕМЕНТОВ ИЗ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2180868C2 |
US 3993728 A, 23.11.1976 | |||
Ультразвуковой способ определения разности главных механических напряжений в ортотропных конструкционных материалах | 2023 |
|
RU2810679C1 |
Авторы
Даты
2006-04-10—Публикация
2004-08-13—Подача