СПОСОБ РЕМОНТА ДЕФЕКТОВ ПОВЕРХНОСТИ МЕТАЛЛОВ Российский патент 2006 года по МПК C21D1/09 B23P6/04 

Описание патента на изобретение RU2273671C1

Изобретение относится к технологии ремонта поверхностных и подповерхностных дефектов в металлах и сплавах в виде пор, микротрещин структурного и технологического происхождения путем воздействия лучевой энергией с высокой концентрацией и может быть использовано в машиностроении и приборостроении.

Известен способ упрочняющей обработки изделий из электропроводящих материалов, основанный на повышении усталостной прочности изделия за счет тренировки знакопеременной нагрузкой, величину которой выбирают из условия превышения в поверхностном слое предела текучести с одновременным заполнением микротрещин и пор [1].

Недостатками данного способа являются: относительно большая длительность проведения обработки, сложные технология упрочнения и применяемое оборудование.

Известен также способ ремонта дефектов литья на основе их заделки металлическим порошком путем термоциклирования лазерным лучом [2].

Недостатками его следует считать необходимость предварительной подготовки поверхности под заполнение дефектов присадочным металлическим порошком, невозможность устранения подповерхностных дефектов без предварительной разделки.

Задача изобретения - повышение энергетической эффективности процесса и упрощение системы контроля дефектов.

Технический результат - упрочнение металлов при скрытом дефектообразовании, повышение производительности.

Это достигается тем, что в способе ремонта дефектов поверхности металлов, включающем выявление зоны расположения дефектов и формирование бездефектной зоны многократным воздействием на обрабатываемый участок управляемым лазерным лучом с одновременным контролем качества, бездефектную зону формируют расплавлением поверхностного слоя и одновременно производят активную локацию приповерхностного слоя обрабатываемого участка поверхностными акустическими волнами, которые возникают на обрабатываемом участке при генерации лазерной плазмы; при этом генерацию и контроль ведут до достижения заранее заданного минимума разности амплитуд двух соседних импульсов акустических волн, а затем снова производят перемещение поверхности относительно лазерного луча. При этом лазерный луч моделируют пространственно в плоскости фокусировки на поверхность металла.

Известно, что залечивание несполошностей в металлах может быть достигнуто действием переменного электромагнитного поля за счет интенсификации перемещения вакансий и направленной самодиффузии в кристаллических решетках разделенных областей. При этом имеет место эффект, близкий по физической сущности к сварке.

Локация дефектов (несплошностей) в металлах может быть также обеспечена ударно-волновыми процессами, генерируемыми электромагнитными колебаниями в металле в виде возникающих от несплошностей поверхностно-акустических волн (ПАВ). Известно, что при облучении металлов лазерным лучом вследствие краткотечности процесса теплопередачи и исключительно высокого градиента температурного поля вблизи обрабатываемой поверхности в межэлектродном пространстве (оптико-фокусирующая система - обрабатываемая поверхность) возникает разрядная ионизация с образованием областей с высокой плотностью и энергетическим потенциалом. Последние обусловливают генерацию волновых процессов в поверхностных слоях металла и вторичную генерацию от несплошностей в виде акустических волн, параметры которых оказываются достаточными для локации дефектов.

Однако ведение поверхностного упрочнения по заранее заданной площади при постоянстве режимов оказывается недостаточно технологичным вследствие отсутствия возможности учета латентного периода, характерного для лоцирующего процесса. Учитывая, что образование поверхностных и подповерхностных несплошностей в металлах носит исключительно вероятностный характер и оказывается труднопрогнозируемым, представляется целесообразным устанавливать длительность лучевого (теплового) воздействия лазерного луча дифференцированно - с учетом условий поверхностного упрочнения для областей с отсутствием дефектов, а также для областей с дефектообразованием.

Такой подход позволяет повысить производительность процесса обработки, поскольку требует повторного сканирования только в областях с наличием дефектов, в других же областях сканирование производится однократно (по режимам, принятым для бездефектных областей).

Диагностирование областей упрочнения в металле и адаптация режимов обработки для оптического квантового генератора (ОКГ) основывается на том, что в качестве источника ПАВ выступает непосредственно тот участок поверхности, в пределах которого имеются несплошности. Их присутствие обусловливает возникновение вторичных ПАВ, регистрируемых ПАВ-локатором, связанным с процессором (ОКГ), что является сигналом для остановки перемещения лазерного луча в продольном направлении (или обрабатываемого объекта) и многократному сканированию этого участка до момента установленного ранее регламентированного соотношения разности амплитуд двух последовательных акустических импульсов на приемнике ПАВ-локатора. Уменьшение амплитуды ПАВ при повторных воздействиях лазерными импульсами соответствует эффекту "залечивания" несплошностей.

Важным при описанной схеме воздействия является установление необходимой начальной амплитуды лоцирующего дефекты (несплошности) сигнала от лазерного луча. Известно, что характер волновых процессов от генерируемой лазерным лучом плазмы вблизи обрабатываемой поверхности зависит от степени поляризации лазерного луча - его пространственной модели в плоскости фокусировки на поверхность металла. Поэтому для достижения требуемого условия управления начальной амплитудой генерируемых лазерным импульсом волновых процессов в металле лазерный луч пространственно моделируется в плоскости фокусировки, при этом степень поляризации устанавливается эмпирически в зависимости от размеров и концентрации дефектов в области упрочнения.

На фиг.1 приведена схема упрочнения, на фиг.2 - пятно фокусировки.

Способ реализуется в следующей последовательности.

На объекте упрочнения 1 определяют поверхность лазерного воздействия, в том числе области, содержащие поверхностные и подповерхностные дефекты (несплошности) 2. На оптико-фокусирующей системе 3 лазерной установки 4 устанавливают режимы лазерного воздействия (диаметр лазерного луча, плоскость поляризации и пространственную модель луча в плоскости фокусировки (фиг.2), плотность подводимой энергии, частоту следования импульсов, скорость сканирования и перемещения источников лазерного луча, длительность теплового воздействия). Величину, соответствующую заданной разности амплитуды двух соседних импульсов, задают процессором 5, связанным с ПАВ-локатором 6, посредством которого обеспечивается распознавание области дефектообразования (несплошностей) 2.

Производят воздействие на поверхность объекта упрочнения 1. При этом вблизи поверхности объекта упрочнения образуется расходящийся пучок лазерной плазмы 7.

Процессором 5 обеспечивают коррекцию перемещений и сканирующей кинематики оптико-фокусирующей системы 3 посредством привода 8 (перемещение показано стрелкой). Сканирование луча 7 обеспечивают известным способом (например, качающимся зеркалом) по двунаправленной стрелке. Перемещение объекта упрочнения 1 относительно луча 7 указано стрелкой на объекте.

Ведут контроль качества (отсутствия дефектов) во всей формируемой бездефектной зоне. При возникновении импульса 9 ПАВ от дефектов и установлении превышения разности начальной и текущей амплитуд ПАВ в двух последовательных лазерных импульсах, регистрируемых ПАВ-локатором 6, сигнал от последнего поступает на процессор 5. Посредством процессора обеспечивают прекращение продольного перемещения объекта упрочнения 1 и последовательное сканирование данного участка поверхности лазерным лучом 7 до момента снижения разности амплитуд двух последовательных акустических импульсов 9 до значения, устанавливаемого заранее и введенного в процессор 5. После этого продольную подачу объекта возобновляют.

Апробацию способа проводили при испытаниях образцов с гарантированным структурным дефектообразованием на выносливость с последующими фрактографическим и металлографическим анализами изломов (поверхностей разрушения) по стандартной методике.

Результаты апробации способа проиллюстрированы в таблице.

ТаблицаРезультаты апробации способаОбрабатываемый материалЧисло циклов сканирования, n, при глубине расположения несплошности, ммМинимальная разность амплитуды двух акустических
импульсов, dAmin
Усредненные размеры поверхностных и подповерхностных
несплошностей, мкм
Частота сканирования, ГцНаибольшее приращение предела выносливости по отношению к прототипу
1.02.03.04.05.0Армко-железо13202731380.901.0-2.53001.44Углеродистые стали14213244510.941.0-2.52501.41Легированные (высоколеги-рованные) стали17253947540.921.0-2.52001.38Твердые сплавы стали22334258660.971.0-2.51001.26

Источники информации

1. Авт. св. СССР №1821495, C 23 C 14/32, 1993 г.

2. Патент РФ №2194603, B 23 P 6/00, 2002 г.

Похожие патенты RU2273671C1

название год авторы номер документа
Ультразвуковой прибор неразрушающего контроля гибридного типа 2022
  • Евдокимов Алексей
  • Субботин Артемий
  • Малинка Сергей
  • Сидоров Георгий
RU2824537C2
НЕЛИНЕЙНЫЙ МОДУЛЯЦИОННЫЙ СПОСОБ МОНИТОРИНГА СОСТОЯНИЯ ПРОТЯЖЕННЫХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2022
  • Рыбин Игорь Александрович
RU2799241C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ УЗЛОВ ТЕЛЕЖЕК ЖЕЛЕЗНОДОРОЖНЫХ ВАГОНОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Романов Сергей Иванович
  • Смолянов Владимир Михайлович
  • Журавлёв Алексей Викторович
  • Новосельцев Дмитрий Вячеславович
  • Будков Алексей Ремович
  • Серебренников Андрей Николаевич
  • Мальцев Алексей Борисович
RU2480741C1
Способ ультразвукового контроля поверхностных и подповерхностных дефектов металлопродукции и устройство для его осуществления 2016
  • Кашин Алексей Михайлович
RU2644438C1
СПОСОБ ОБНАРУЖЕНИЯ ПЛОСКОСТНЫХ НЕСПЛОШНОСТЕЙ В ТОЛСТОСТЕННЫХ ИЗДЕЛИЯХ УЛЬТРАЗВУКОВЫМ МЕТОДОМ 2000
  • Круглов Б.А.
  • Карзов Г.П.
RU2192635C2
Способ лазерно-акустического контроля 1989
  • Бирюкова Надежда Петровна
  • Богородский Николай Георгиевич
  • Датько Валерий Данилович
  • Морозова Тамара Викторовна
  • Хамчишкин Виктор Алексеевич
  • Чабанов Владимир Емельянович
SU1775660A1
Способ двухкоординатного отклонения оптического излучения 2024
  • Гук Александр Сергеевич
  • Рогалин Владимир Ефимович
  • Филин Сергей Александрович
RU2825981C1
СПОСОБ ДИАГНОСТИКИ ДЕФЕКТОВ НА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЯХ 2012
  • Перельман Лев Теодорович
  • Агранат Михаил Борисович
  • Винокуров Владимир Арнольдович
  • Гетманский Михаил Данилович
  • Мурадов Александр Владимирович
  • Ситников Дмитрий Сергеевич
  • Харионовский Владимир Васильевич
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Новиков Андрей Александрович
  • Котелев Михаил Сергеевич
  • Бардин Максим Евгеньевич
  • Викторов Андрей Сергеевич
RU2522709C2
Способ поверхностной закалки стволов орудий 2017
  • Кузнецов Николай Сергеевич
RU2668531C1
Устройство для иммерсионного ультразвукового контроля 2020
  • Кириков Андрей Васильевич
  • Дымкин Григорий Яковлевич
RU2723913C1

Иллюстрации к изобретению RU 2 273 671 C1

Реферат патента 2006 года СПОСОБ РЕМОНТА ДЕФЕКТОВ ПОВЕРХНОСТИ МЕТАЛЛОВ

Изобретение относится к области машиностроения и приборостроения в качестве технологии ремонта поверхностных и подповерхностных дефектов в металлах и сплавах в виде пор, микротрещин структурного и технологического происхождения. Техническим результатом является упрочнение металлов при скрытом дефектообразовании, повышение производительности. Сущность изобретения: производят выявление зоны расположения дефектов и формирование бездефектной зоны многократным воздействием на обрабатываемый участок управляемым лазерным лучом с одновременным контролем качества, причем бездефектную зону формируют расплавлением поверхностного слоя и одновременно производят активную локацию приповерхностного слоя обрабатываемого участка поверхностными акустическими волнами, которые возникают на обрабатываемом участке при генерации лазерной плазмы; при этом генерацию и контроль ведут до достижения заранее заданного минимума разности амплитуд двух соседних импульсов акустических волн, а затем снова производят перемещение поверхности относительно лазерного луча. При этом лазерный луч моделируют пространственно в плоскости фокусировки на поверхность металла. 1 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 273 671 C1

1. Способ ремонта дефектов поверхности металлов, включающий выявление зоны расположения дефектов и формирование бездефектной зоны многократным воздействием на обрабатываемый участок управляемым лазерным лучом с одновременным контролем качества, отличающийся тем, что бездефектную зону формируют расплавлением поверхностного слоя и одновременно производят активную локацию приповерхностного слоя обрабатываемого участка поверхностными акустическими волнами, которые возникают на обрабатываемом участке при генерации лазерной плазмы, при этом генерацию и контроль ведут до достижения заранее заданного минимума разности амплитуд двух соседних импульсов акустических волн, а затем снова производят перемещение поверхности относительно лазерного луча.2. Способ по п.1, отличающийся тем, что лазерный луч моделируют пространственно в плоскости фокусировки на поверхность металла.

Документы, цитированные в отчете о поиске Патент 2006 года RU2273671C1

СПОСОБ РЕМОНТА ДЕФЕКТОВ ЛИТЬЯ 2001
  • Тескер Е.И.
  • Гурьев В.А.
  • Савченко А.Н.
  • Елистратов В.С.
  • Тескер С.Е.
  • Хоботов А.В.
RU2194603C1
Способ удаления дефектов металла 1978
  • Чепурков Геннадий Иванович
  • Харитонов Евгений Петрович
  • Анфимов Александр Федорович
  • Рохлин Эдуард Аронович
SU804335A1
Способ лазерной обработки поверхности детали 1990
  • Фролов Василий Иванович
  • Усанов Александр Васильевич
  • Назаркин Виктор Гаврилович
SU1816621A1
СПОСОБ ВОССТАНОВЛЕНИЯ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 1995
  • Гурьев В.А.
  • Гурьева Л.В.
  • Тескер Е.И.
RU2087548C1
RU 2056253 C1, 20.03.1996.

RU 2 273 671 C1

Авторы

Рузанов Феликс Иванович

Пыриков Павел Геннадьевич

Даты

2006-04-10Публикация

2004-10-05Подача