СПОСОБ ИЗГОТОВЛЕНИЯ АНТИФРИКЦИОННЫХ МАТЕРИАЛОВ Российский патент 2006 года по МПК F16C33/14 

Описание патента на изобретение RU2274775C2

Изобретение относится к области производства антифрикционных материалов, изготовляемых методом порошковой металлургии и используемых в различных отраслях промышленности.

Высокие антифрикционные характеристики фторопласта (политетрафторэтилена), его химическая стойкость и возможность работы без смазки или со смазкой водой стимулируют разработку всевозможных композиционных материалов, состоящих из пористого металлического каркаса, обеспечивающего прочность антифрикционного материала, и политетрафторэтиленового наполнителя. В качестве металлического каркаса чаще всего используется спеченный порошок оловянистой бронзы. Для введения политетрафторэтилена в поры металлического каркаса предложены различные способы, отличающиеся значительной трудоемкостью и сложностью.

Так, например, способ вакуумной пропитки порошковых втулок водной суспензией фторопласта заключается в том, что пористые детали вакуумируются в специальной камере при остаточном давлении 1,5-4,0 кПа. После установления необходимого разрежения в камеру впускается суспензия фторопласта с таким расчетом, чтобы полностью покрыть пропитываемые детали. Затем вакуумная камера сообщается с атмосферой. Под давлением воздуха суспензия вдавливается в поры деталей. Полностью поры порошковой детали заполняются после 8-10 пропиток, т.к. суспензия содержит 40-50% фторопласта. После пропитки материал спекается при температуре 360-380°С в восстановительной среде (И.Д.Радомысельский, Д.С.Ясь, В.И.Павленко. Производство и использование порошковых деталей в легкой промышленности. Киев: Техника, 1982 г., 175 с.). Недостатком способа является повышенная сложность и длительность процесса пропитки.

Другой способ заключается во впрессовывании листового или порошкообразного фторопласта под давлением 200-250 МПа и температуре 360-380°С при длительных выдержках (до 20 минут) и охлаждении под давлением (И.М.Федорченко, Д.И.Пугина Композиционные спеченные антифрикционные материалы. Киев: Наукова думка, 1980, 404 с.). Недостатками этого способа являются: необходимость высоких давлений, что может вызвать повреждения пористой основы; длительность приложения нагрузки; необходимость охлаждения под давлением, т.к. фторопласт при снятии давления стремится выйти из пор.

В качестве прототипа принято изобретение "Способ заполнения пористого металлического слоя", а.с. СССР №327967, опубл. "Бюллетень изобретений" №6, 1972, авторы Семенов А.П. и др. Способ включает операции спекания или напекания пористого металлического каркаса, преимущественно из сферических частиц оловянистой бронзы, на стальную подложку в восстановительной среде при температуре 860-880°С в течение 1,5-2 часов, нанесения на его поверхность слоя фторопластовой суспензии, впрессовывание ее в поры посредством многократного движения пуансона сложной формы, сушку фторопластовой пасты при температуре (85-95)°С в течение (2-2,5) часов и ее спекание при температуре (360-380)°С в течение (1,0-1,5) часов в восстановительной среде. Недостатком прототипа является его высокая трудоемкость изготовления и невозможность получения толщины фторопластового слоя в широких пределах, что снижает технические и технологические возможности при изготовлении и эксплуатации антифрикционных и триботехнических узлов машин и механизмов, используемых в различных отраслях промышленности.

Техническим результатом предлагаемого изобретения является снижение трудоемкости изготовления антифрикционных материалов и возможность получения толщины фторопластового слоя в широких нескольких десятков долей миллиметра до нескольких миллиметров, что, в свою очередь, дает возможность как калибрования, так и механической обработки поверхности антифрикционных и триботехнических узлов машин и механизмов для получения требуемой точности размеров в зависимости от возможностей предприятий-изготовителей подшипников и технических требований к их эксплуатации в составе различных механизмов.

Технический результат достигается за счет того, что на поверхность спеченного или напеченного пористого металлического каркаса устанавливают эластичную кольцевую прокладку высотой Hn=К(hф+hмк·Пмк), где К - коэффициент, взятый в пределах от 1,1 до 1,4; hф - требуемая толщина фторопластового слоя на поверхности металлического каркаса; hмк и Пмк - толщина и пористость металлического каркаса, а ширину прокладки В выбирают в пределах 0,8-2,0 Hn, затем полностью заполняют внутренний объем эластичной кольцевой прокладки фторопластовой композицией, имеющей концентрацию политетрафторэтилена в диапазоне 70-80 мас.% и получаемой путем смешивания фторопластовой суспензии и фторопластового порошка, после чего производят осадку слоя фторопластовой композиции вместе с эластичным кольцом до высоты hф и удаление эластичного кольца.

В основе изобретения лежит экспериментально обнаруженные авторами особые реологические свойства фторопластовой композиции в диапазоне концентраций политетрафторэтилена 70-80 мас.%. В указанном диапазоне удается получить оптимальную степень заполнения пор политетрафторэтиленом (до 90-96%) за один цикл впрессовывания суспензии. Остаточная вода при этом вытесняется из суспензии и удаляется через отверстия в стальной подложке (см. чертеж). Величина осадки слоя фторопластовой композиции определяется необходимостью, во-первых, заполнить поры слоя пористого каркаса и, во-вторых, выдавить из композиции излишнюю воду.

Высота эластичной кольцевой прокладки Hn определяется начальной высотой слоя композиции, которая, в свою очередь, зависит от требуемой толщины слоя фторопласта (hф), толщины (hмк) и пористостости (Пмк) металлического каркаса. Потребная толщина слоя фторопласта зависит от условий эксплуатации и принятой технологии изготовления подшипников и колеблется от нескольких десятков миллиметров до нескольких миллиметров. Требования к точности размеров подшипников весьма велики, поэтому они либо калибруются, либо обрабатываются механически. В первом случае толщина слоя фторопласта составляет десятые доли миллиметра, во втором случае - миллиметры.

Ширина упругого элемента (В) должна быть взята в пределах от 0,8 до 2 его высоты. При меньшей ширине в процессе деформации возможна потеря устойчивости, при большей ширине требуются слишком большие усилия осадки.

При концентрации политетрафторэтилена меньше 70% фторопластовая композиция представляет собой сметанообразную субстанцию, которая легко входит в поры пористого каркаса, однако при этом не происходит отжима воды, в связи с чем приходится проводить несколько циклов впрессовывание-сушка, чтобы добиться степени заполнения пор порядка 90-96%, и трудоемкость изготовления возрастает. При концентрации политетрафторэтилена больше 80% фторопластовая композиция приобретает свойства упругого тела. Она с большим трудом входит в поры каркаса, пружинит и растрескивается, что ухудшает степень заполнения пор и качество антифрикционных материалов. Поэтому оптимальная концентрация политетрафторэтилена составляет 70-80 мас.%.

Примеры реализации изобретения приведены в таблице. Опробывание было проведено на фторопластовой композиции, изготовленной из смеси водной суспензии политетрафторэтилена марки Ф-4Д по ТУ 6-05-1246-76 и порошка марки 4ТМ по СТП 6-00-05807960-138-99.

Таблица
Пример реализации изобретения
Характерные признаки способа и полученные результатыПредлагаемый способПрототипНижнее значениеСреднее значениеВерхнее значениеХарактерные признаки способаКонцентрация политетрафторэтилена в композиции, мас.%70758040-50Коэффициент К1,41,31,1-Толщина слоя фторопласта hф, мм0,5250,4-0.6Толщина бронзового слоя hмк, мм2343Пористость бронзового слоя, %30364036Высота упругого элемента и толщина слоя фторопластовой композиции Hn, мм1.547,5-Отношение ширины упругого элемента В к высоте Hn0,812-Ширина упругого элемента, мм1,2415-Величина осадки упругого элемента и слоя фторопластовой композиции (Hn-hф), мм122,5-Результаты реализации способаСтепень заполнения пор бронзового каркаса (%)90969276Характеристика результатов1. Заполнение пор за 1 цикл впрессовывания 1. Заполнение пор за 6-8 циклов впрессовывания 2. Возможность получения толщины фторопластового слоя в широких пределах (0,5-5)мм2. Толщина фторопластового слоя 0,4-0,6 мм.

Пористый металлический каркас был получен путем нанесения распыленного порошка оловянистой бронзы марки ПРБ-1 по ТУ 0218451-96 на стальную подложку.

Приведенные в таблице данные подтверждают правильность предложенного решения и выбранных параметров способа.

Экономический эффект изобретения определяется снижением трудоемкости изготовления подшипников в 2-2,5 раза.

Экологический эффект определяется возможностью эксплуатации подшипников без смазки или со смазкой водой, что исключает попадание нефтепродуктов в естественные водоемы.

Похожие патенты RU2274775C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДШИПНИКА СКОЛЬЖЕНИЯ С ВЫСОКИМИ ХАРАКТЕРИСТИКАМИ 2001
  • Антонов А.И.
  • Зайчиков А.А.
  • Коптева Г.Б.
  • Федорченко Д.Г.
  • Фомин М.И.
RU2267034C2
СПОСОБ ПОЛУЧЕНИЯ КОМБИНИРОВАННОГО МЕТАЛЛОФТОРОПЛАСТОВОГО МАТЕРИАЛА 2004
  • Бузник Вячеслав Михайлович
  • Корнопольцев Василий Николаевич
  • Корнопольцев Николай Васильевич
  • Могнонов Дмитрий Маркович
  • Рогов Виталий Евдокимович
RU2277997C1
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКОГО МЕТАЛЛОФТОРОПЛАСТОВОГО МАТЕРИАЛА 2002
  • Корнопольцев В.Н.
  • Корнопольцев Н.В.
  • Рогов В.Е.
  • Могнонов Д.М.
  • Грешилов А.Д.
RU2212307C1
Антифрикционный композиционный материал и способ его изготовления 2015
  • Бордулев Владимир Геннадьевич
  • Воробьев Станислав Анатольевич
  • Корольков Виктор Викторович
  • Павлычев Андрей Николаевич
  • Покалякин Сергей Юрьевич
  • Тесля Владимир Ионович
  • Фролов Николай Николаевич
  • Яценко Владимир Анатольевич
RU2614327C2
Полимерная композиция для изготовления антифрикционного материала 1975
  • Стукач Алексей Михайлович
  • Северин Павел Андреевич
  • Тихонов Валентин Михайлович
  • Чуб Владимир Степанович
SU740799A1
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНОЙ МЕТАЛЛОФТОРОПЛАСТОВОЙ ЛЕНТЫ 2002
  • Калиниченко Владимир Георгиевич
  • Коваленко Денис Валерьевич
  • Чугунов Валерий Федорович
  • Щеглов Евгений Леонидович
RU2286231C2
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКОГО МАТЕРИАЛА 2004
  • Бузник Вячеслав Михайлович
  • Корнопольцев Василий Николаевич
  • Корнопольцев Николай Васильевич
  • Могнонов Дмитрий Маркович
  • Рогов Виталий Евдокимович
RU2277998C1
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛИ С ОДНОВРЕМЕННЫМ НАНЕСЕНИЕМ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ 2005
  • Берсудский Анатолий Леонидович
RU2283897C1
АНТИФРИКЦИОННЫЙ МАТЕРИАЛ РОМАНИТ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ЭЛЕМЕНТ УЗЛА ТРЕНИЯ 2001
  • Романов Сергей Михайлович
  • Романов Дмитрий Сергеевич
RU2201431C2
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВЫХ АНТИФРИКЦИОННЫХ МАТЕРИАЛОВ 2009
  • Корнопольцев Василий Николаевич
RU2438829C2

Реферат патента 2006 года СПОСОБ ИЗГОТОВЛЕНИЯ АНТИФРИКЦИОННЫХ МАТЕРИАЛОВ

Изобретение относится к области машиностроения, в частности к производству антифрикционных материалов, изготовляемых методом порошковой металлургии и используемых в различных отраслях промышленности. Способ изготовления антифрикционных материалов включает операции спекания или напекания пористого металлического каркаса преимущественно из сферических частиц оловянистой бронзы на стальную подложку в восстановительной, нанесения на его поверхность слоя фторопластовой суспензии, впрессовывание ее в поры металлического каркаса, сушку фторопластовой суспензии и ее спекание в восстановительной среде. На поверхность спеченного или напеченного пористого металлического каркаса устанавливают эластичную кольцевую прокладку высотой Hn, а ширину прокладки В выбирают в пределах 0,8÷2,0 Hn, затем полностью заполняют внутренний объем эластичной кольцевой прокладки фторопластовой композицией, имеющей концентрацию политетрафторэтилена в диапазоне 70-80 мас.% и получаемой путем смешивания фторопластовой суспензии и фторопластового порошка, после чего производят осадку слоя фторопластовой композиции вместе с эластичным кольцом и удаление эластичного кольца. Технический результат - обеспечение автоматизации процесса клепки сепаратора при сборке подшипника качения. 1 ил., 1 табл.

Формула изобретения RU 2 274 775 C2

Способ изготовления антифрикционных материалов, включающий операции спекания или напекания пористого металлического каркаса преимущественно из сферических частиц оловянистой бронзы на стальную подложку в восстановительной среде при температуре 860÷880°С в течение 1,5÷2 ч, нанесения на его поверхность слоя фторопластовой суспензии, впрессовывание ее в поры металлического каркаса, сушку фторопластовой суспензии при температуре 85÷95°С в течение 2÷2,5 ч и ее спекание при температуре 360÷380°С в течение 1,0÷1,5 ч в восстановительной среде, отличающийся тем, что на поверхность спеченного или напеченного пористого металлического каркаса устанавливают эластичную кольцевую прокладку высотой Hn=К(hф+hмк·Пмк),

где К - коэффициент, взятый в пределах 1,1÷1,4;

hф - требуемая толщина фторопластового слоя на поверхности металлического каркаса;

hмк и Пмк - толщина и пористость металлического каркаса,

а ширину прокладки В выбирают в пределах 0,8÷2,0 Hn, затем полностью заполняют внутренний объем эластичной кольцевой прокладки фторопластовой композицией, имеющей концентрацию политетрафторэтилена в диапазоне 70-80 мас.%, и получаемой путем смешивания фторопластовой суспензии и фторопластового порошка, после чего производят осадку слоя фторопластовой композиции вместе с эластичным кольцом до высоты hф и удаление эластичного кольца.

Документы, цитированные в отчете о поиске Патент 2006 года RU2274775C2

0
SU327967A1
ИЗМЕРИТЕЛЬНАЯ СЕКЦИЯ РАСХОДОМЕРА ГАЗОЖИДКОСТНОГО ПОТОКА 2008
  • Москалев Игорь Николаевич
  • Беляев Вадим Борисович
  • Тихонов Александр Борисович
  • Королько Виктор Андреевич
  • Пономаренко Дмитрий Владимирович
  • Соколов Вячеслав Петрович
RU2386929C2
Способ технологической обработки элемента пары трения 1985
  • Сиренко Геннадий Александрович
  • Таланкин Борис Олегович
  • Перлин Семен Михайлович
  • Ящук Валентина Ивановна
SU1516641A1

RU 2 274 775 C2

Авторы

Бланк Евгений Давыдович

Виноградов Сергей Евгеньевич

Максимова Александра Леонидовна

Орыщенко Алексей Сергеевич

Рыбин Валерий Васильевич

Слепнев Валентин Николаевич

Шекалов Валентин Иванович

Даты

2006-04-20Публикация

2004-07-02Подача