НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ПРОИЗВОДСТВА ТРУБ И СПОСОБ ПРОИЗВОДСТВА ТРУБ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ Российский патент 2006 года по МПК C22C38/40 C21D7/04 C21D8/10 

Описание патента на изобретение RU2276695C1

Изобретение относится к черной металлургии, в частности к нержавеющим сталям, и может быть использовано при производстве труб повышенной коррозионной стойкости различного назначения в машиностроительных отраслей промышленности, например для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды (водные среды, содержащие ионы хлора, сероводород, углекислый газ и т.д.). Обычные стали в таких условиях могут быть подвержены общей и локальной коррозии, коррозионному растрескиванию под напряжением, коррозионной эрозии, что в свою очередь приведет к повреждениям трубопровода.

Следует отметить, что на коррозионную стойкость стали и ее прочностные свойства влияют химический состав, параметры микроструктуры стали, количество, состав и свойства неметаллических включений, а способ производства стали должен предусматривать минимальное легирование в процессе выплавки, обеспечивая высокую степень чистоты по неметаллическим включениям.

Из уровня техники известна мартенситная нержавеющая сталь для производства труб (см. ЕР 0178338, С 22 С 38/18, 23.04.1986). Сталь содержит компоненты при следующем их соотношении, мас.%:

Углеродне более 0,3Кремнийне более 1,0Марганецне более 2,0Хром11,0-14,0Алюминий0,005-0,10Азотне более 0,10Фосфорне более 0,20Серане более 0,003Железоостальное

один или более элементов из группы:

Никельне менее 3,5Медьне менее 2,0Молибденне менее 2,5Ниобийне менее 0,10Ванадий3-10

Также из уровня техники известен способ производства стали для труб с повышенной коррозионной стойкостью, включающий выплавку стали, ее разливку, ускоренное охлаждение полученной заготовки в воде и ее термообработку (см. RU 2184155 С2, C 21 D 8/10, 27.06.2002).

Наиболее близким аналогом к заявленной группе изобретений по совокупности существенных признаков и назначению является SU 1686026 А1, С 22 С 38/48, 23.10.1991, из которого известна конструкционная нержавеющая сталь, используемая для изготовления сварных труб трубопроводов высокого давления, и способ производства труб из нержавеющей стали. Рассматриваемая сталь данного состава и полученная данным способом обладает повышенной прочностью, пластичностью и стойкостью против межкристаллитной коррозии сварных соединений. Сталь содержит компоненты при следующем их соотношении, мас.%:

Углерод0,05-0,08Хром16,5-17,5Никель4,5-5,2Марганец1,0-1,5Кремний1,5-1,8Молибден1,0-3,0Ниобий0,04-0,16Азот0,15-0,19Железоостальное

Способ включает выплавку стали, ее разливку в слитки, деформацию и последующую термообработку.

Недостатком стали, раскрытой в наиболее близком аналоге, является пониженные механические свойства, в частности предел текучести при температуре 350°С. При этом качество поверхности труб было низким (Rz=80 мкм и грубее), поэтому требовалась дополнительная операция "овализации" труб - холодная деформация в правильной машине - с последующим шлифованием поверхности с целью удаления следов овализации, что, естественно, приводит к дополнительным трудозатратам.

Техническим результатом изобретения является создание новой марки нержавеющей стали для производства труб, в том числе и труб "большого" диаметра (⊘ 159-219 мм), имеющей сбалансированный химический и фазовый состав и обладающей повышенным уровнем механических свойств, в частности, повышенным уровнем значений предела текучести (σ0,2) при температуре 350°С, а также снижение трудозатрат при производстве труб из заявленной стали за счет исключения дополнительных операций по обработке труб.

Технический результат достигается тем, что предложена нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси, при этом она дополнительно содержит алюминий, титан и бор, при следующем соотношении компонентов, мас.%:

углерод0,03-0,1кремнийне более 0,8марганец1,0-2,0хром17,0-19,0никель9,0-11,0молибденне более 0,5алюминийне более 0,05титан0,015-0,80бор0,002-0,005Fe и неизбежные примеси остальное,

при этом отношение титана к углероду в стали составляет 7-10,

а также способ производства труб из нержавеющей стали, включающий выплавку стали, ее разливку в слитки, деформацию слитков в трубную заготовку, горячее прессование, последующую термообработку, при этом выплавляют нержавеющую сталь, после разливки стали и деформации слитка проводят прессование трубной заготовки в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе.

При этом неизбежными и нежелательными примесями в стали являются сера, фосфор и медь.

Микролегирование стали бором (0,002-0,005 мас.%) способствует измельчению аустенитного зерна за счет вытеснения избыточных фаз, в том числе карбидных, с границ в тело зерна, что сказалось на повышении прочностных свойств стали на 25-30% при 350°С. Это позволило получить требуемый комплекс физико-механических свойств труб, в том числе σ0,2 при 350°С, что исключило необходимость проведения дополнительных операций по овализации и последующей шлифовки труб.

Уменьшение содержания кремния в стали и введение алюминия в предлагаемых пределах позволит повысить прочностные свойства и свариваемость без снижения коррозионной стойкости за счет торможения роста аустенитного зерна.

Содержание молибдена снижено за счет дополнительного легирования титаном, который так же, как и молибден, является карбидообразующим элементом и имеет по сравнению с молибденом большее сродство к углероду.

Соотношение титана к углероду в стали выбрано в диапазоне 7-10, поскольку именно при таком соотношении титан позволяет эффективно связывать углерод и азот, являющийся примесью. При этом увеличивается усвоение титана расплавом стали. Изменение этого соотношения приведет к появлению оксидов титана и увеличению загрязненности стали неметаллическими включениями.

Выбранный вид термообработки, а именно температурный интервал нагрева для аустенизации, связан с предотвращением возможности перегрева наследственно мелкозернистой структуры, что приведет к снижению всех механических свойств стали. Выдержка в течение 1 мин на мм толщины стенки трубы дает возможность в полной мере пройти процессу перераспределения легирующих компонентов и процессу наследования исходной структуры.

Пример. Была проведена серия лабораторных плавок и исследований структуры стали и ее механических свойств: плавка стали с содержанием бора 0,002, 0,003 и 0,005 мас.%, последующая разливка в слитки 15 кг, их деформация прессованием в трубы и термическая обработка по заданным режимам. После прессования проводили ускоренное охлаждение труб в воду для фиксации структуры и не допущения роста аустенитного зерна.

Проведенный химический анализ показал содержания легирующих компонентов и примесей, которые представлены в табл.1 Механические свойства представлены в табл.2. Микроструктуры полученной стали после термической обработки представлена на фиг.1 и 2.

Таблица 1
Химический состав нержавеющей стали для производства труб, мас.%
СSiMnCrNiМоAlTiВПримеси: P, S, Cu10,0371,51,3716,95,51,0---0,020; 0,005; 0,2820,0340,521,3616,89,40,500,050,300,0020,021; 0,005; 0,2830,0360,521,3616,959,40,500,050,250,0040,021; 0,005; 0,2840,0330,511,3516,859,360,500,050,270,0050,020; 0,005; 0,27

Где плавка №1 соответствует стали из наиболее близкого аналога, плавки №2, 3, 4 соответствуют составу заявляемой стали с содержанием бора соответственно 0,002, 0,003 и 0,005 мас.%.

Таблица 2
Механические свойства при 20 и 350°С, термообработка 1050°С
σв, МПаσ0,2, МПаδ5, %ψ, %№ зерна аустенита2035020350203502035016604303902675631-736-726734484373275028-718-936854384203305336-739-1046914674403565827-708-9

Измерения проводились и рассчитывались, как среднее из 5 полученных значений.

Размер аустенитного зерна, охарактеризованный номером (баллом), был определен по стандартной шкале микроструктур (ГОСТ 5639-65). Полученные данные показали, что аустенитное зерно является мелкозернистым. Следовательно, при использовании предложенной марки стали и при проведении вышеописанной термической обработки размер зерна уменьшается, что положительно сказывается на механических свойствах стали.

Пример. Выплавляют сталь в электропечи с разливкой при т-ре 1560°С, затем осуществляют разливку ее в слитки, деформация слитков в трубную заготовку диаметром 150 мм осуществляется при температуре 1120°С. Обдирка трубной заготовки осуществляется до шероховатости RZ - 80 мкм; далее горячее прессование с усилием 2200 т трубной заготовки на прессе в трубу, термообработка трубы методом закалки от 1030°С с охлаждением в воде с последующей отделкой.

Таким образом, использование предложенной стали существенно повысит прочностные характеристики, в том числе предел текучести при 350°С, и снизит трудозатраты при производстве труб.

Похожие патенты RU2276695C1

название год авторы номер документа
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2022
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Ульянов Андрей Георгиевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Лоханов Дмитрий Валерьевич
  • Благовещенский Сергей Иванович
  • Никляев Андрей Викторович
  • Пышминцев Игорь Юрьевич
  • Выдрин Александр Владимирович
  • Черных Иван Николаевич
  • Корсаков Андрей Александрович
RU2798642C1
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
ВЫСОКОПРОЧНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2003
  • Кузнецов Ю.В.
RU2243286C1
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
НЕРЖАВЕЮЩАЯ СТАЛЬ 1992
  • Полинец В.А.
  • Попов Э.Н.
  • Романов А.К.
  • Новикова Т.В.
  • Чернышов Е.Я.
  • Балдин В.С.
  • Мельников Ю.Я.
  • Никитин В.П.
  • Мокров Е.В.
  • Прокудин В.А.
  • Мирзоян А.Х.
RU2017856C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА 2010
  • Энзель Сергей Эдуардович
  • Якушев Евгений Валерьевич
  • Зырянов Владислав Викторович
  • Иоффе Андрей Владиславович
  • Суворов Павел Вячеславович
  • Тетюева Тамара Викторовна
  • Юдин Павел Евгеньевич
RU2430978C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ ТРУБ 2018
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Алексеев Даниил Юрьевич
  • Денисов Сергей Владимирович
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
  • Никитенко Ольга Александровна
  • Ефимова Юлия Юрьевна
RU2702171C1
МАРТЕНСИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ, ИЗГОТОВЛЕННЫЙ ПРОДУКТ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ 2015
  • Де Карвалью, Рикарду Ноласко
  • Феррейра, Марселу Алмеида Кунья
  • Де Лима, Марилиа Мендонса
  • Мескита, Рафаэль Агнелли
  • Фарина, Алехандре Беллегард
  • Либерто, Родригу Сезар Насименту
RU2696513C2
НЕРЖАВЕЮЩАЯ ВЫСОКОПРОЧНАЯ СТАЛЬ 2006
  • Шадрин Анатолий Павлович
  • Дядик Сергей Петрович
  • Александров Виктор Леонидович
RU2346074C2
ПРУЖИННАЯ СТАЛЬ, СПОСОБ ИЗГОТОВЛЕНИЯ ПРУЖИНЫ ИЗ ТАКОЙ СТАЛИ И ПРУЖИНА ИЗ ЭТОЙ СТАЛИ 2006
  • Нао
  • Кавата Казухиса
  • Муген Жюли
  • Лангийом Жак
RU2397270C2

Иллюстрации к изобретению RU 2 276 695 C1

Реферат патента 2006 года НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ПРОИЗВОДСТВА ТРУБ И СПОСОБ ПРОИЗВОДСТВА ТРУБ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ

Изобретение относится к черной металлургии, в частности к нержавеющим сталям, и может быть использовано при производстве труб повышенной коррозионной стойкости различного назначения, например, для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды. Предложена нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси. Способ производства труб из нержавеющей стали включает выплавку стали, ее разливку в слитки, деформацию слитков в трубные заготовки, горячее прессование, последующую термообработку. После разливки стали и деформации слитков проводят прессование трубных заготовок в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе. Технический результат - создание новой марки нержавеющей стали для производства труб, в том числе и труб "большого" диаметра (⊘ 159-219 мм), имеющей сбалансированный химический и фазовый состав и обладающей повышенным уровнем механических свойств. 2 н.п. ф-лы, 2 табл., 2 ил.

Формула изобретения RU 2 276 695 C1

1. Нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит алюминий, титан и бор, при следующем соотношении компонентов, мас.%:

Углерод0,03-0,1КремнийНе более 0,8Марганец1,0-2,0Хром17,0-19,0Никель9,0-11,0МолибденНе более 0,5АлюминийНе более 0,05Титан0,015-0,80Бор0,002-0,005Железо и неизбежные примесиОстальное

при этом отношение титана к углероду в стали составляет 7-10.

2. Способ производства труб из нержавеющей стали, включающий выплавку стали, ее разливку в слитки, деформацию слитков в трубные заготовки, горячее прессование, последующую термообработку, при этом выплавляют нержавеющую сталь по п.1, после разливки стали и деформации слитков проводят прессование трубных заготовок в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе.

Документы, цитированные в отчете о поиске Патент 2006 года RU2276695C1

Аустенитная нержавеющая сталь 1989
  • Никитина Ира Ивановна
  • Рожкова Алла Сергеевна
  • Власов Анатолий Дмитриевич
  • Румянцев Эдуард Михайлович
  • Никитин Вадим Павлович
  • Шабуров Валентин Евгеньевич
  • Яськин Владимир Николаевич
  • Лючков Анатолий Демьянович
SU1686026A1

RU 2 276 695 C1

Авторы

Пумпянский Дмитрий Александрович

Марченко Леонид Григорьевич

Столяров Владимир Иванович

Шлямнев Анатолий Петрович

Свистунова Тамара Васильевна

Ляльков Александр Григорьевич

Лубе Игорь Иванович

Даты

2006-05-20Публикация

2004-11-16Подача