АДАПТОГЕН Российский патент 2006 года по МПК A61K31/4178 A61P43/00 

Описание патента на изобретение RU2279877C2

Настоящее изобретение относится к медицине, в частности к новому адаптогену.

К адаптогенам относят препараты растительного происхождения (нативные или в виде чистых действующих веществ), обладающие малоспецифическим воздействием на функции ЦНС, эндокринную регуляцию, обменные процессы и повышающие адаптацию организма к неблагоприятным условиям [1].

Механизм адаптогенного воздействия (в том числе гликозидов элеутерококка) обусловлен ослаблением негативных биохимических и функциональных сдвигов при стресс-реакциях и активацией адаптивного синтеза РНК и белков, приводящей к улучшению энергетического обмена и восстановительных процессов. Для развития заметного эффекта требуется продолжительное время и регулярный прием (пик через 4-6 недель при ежедневном приеме).

Наиболее широко используемым и доступным является экстракт элеутерококка [2].

Недостатком этого известного способа является сравнительно невысокая эффективность и необходимость длительного и регулярного приема.

Задача изобретения - новое адаптогенное средство, обладающее более высокой эффективностью.

Указанная задача решается использованием ацизола в качестве адаптогена.

Известно применение ацизола - бис(1-винилимидазол-N) цинка диацетата - в качестве антидота при отравлении окисью углерода [3].

Выбор направлений изучения фармакологической активности препарата "Ацизол" определялся предполагаемыми показаниями к его применению, главным из которых является адаптация организма к неблагоприятным и экстремальным факторам окружающей среды (ионизирующее излучение и активация свободно-радикальных реакций, оксидантные повреждения, гипоксия, энергодефицитные состояния). Этими же соображениями руководствовались при выборе препаратов сравнения.

Из сравнительных нагрузочных тестов использовались модели антагонизма с гексеналом (антинаркозное действие) по продолжительности гексеналового сна [4], учет длительности восстановления способности к прямолинейному движению после вращения по К.Г.Васильеву [5], максимальной длительности статической работы (удержание белыми мышами своего тела на вертикальной сетке), длительности плавания мышей с грузом (динамической работы) [6]. Из моделей экстремальных факторов использовали моделирование гипоксии в замкнутом объеме ("баночная гипоксия") [7].

Ацизол и препарат сравнения вводили ежедневно per os на протяжении двух недель белым нелинейным мышам с помощью дозатора с атравматическим наконечником в 10 часов утра. Дозы препаратов были экстраполированы с человека на грызунов и составляли: Ацизол - 10 мг/кг, элеутерококк - 1 мл/кг.

Динамику веса животных определяли на весах ВЛР-500.

Содержание восстановленного глутатиона в печени определяли иодометрически [8], сульфгидрильных групп сыворотки крови - амперометрическим титрованием по Н.С.Рубиной [9], содержание гликогена - методом Самодьи [10].

Кровь для биохимических исследований получали после декапитации животных.

Содержание общего белка и липидов, холестерина, билирубина сыворотки крови определяли с помощью наборов Био-Ла-Тест Чешской фирмы "Лахема". Уровень глюкозы в крови и гомогенатах органов определяли ортотолуидиновым методом.

Интенсивность тканевого дыхания в гомогенатах органов определяли манометрическим методом Варбурга [11, 12]. Содержание АТФ - хроматографически [13].

Статистическую обработку результатов экспериментов проводили по Стьюденту-Фишеру.

Антагонизм с гексеналом

Антагонизм препаратов с гексеналом определялся после двух недель их ежедневного перорального введения мышам. Контрольная группа животных получала плацебо - дистиллированную воду в том же объеме. Гексенал вводился подкожно в дозе 70 мг/кг. Результаты теста представлены в табл.1.

Полученные данные свидетельствуют о достоверном наличии у Ацизола антинаркозного действия (длительность гексеналового сна сократилась), то есть препарат активирует детоксицирующую монооксигеназную систему печени.

Восстановление способности к прямолинейному движению после вращения

Тест учета длительности восстановления способности к прямолинейному движению после вращения демонстрирует эффективность препарата повышать адаптацию вестибулярного препарата к перегрузкам. Радиальное ускорение создавалось путем вращения мышей в центрифуге продолжительностью 15 с со скоростью 600 об/мин. Мыши при этом помещались в цилиндрические пластмассовые пробирки, закрытые с наружной стороны проволочной сеткой. Обычно после центрифугирования извлеченные из центрифуги мыши вращались вокруг продольной оси туловища или совершали манежные движения (перемещались по кругу).

В эксперименте использовали группы животных после ежедневного перорального введения на протяжении 14 дней исследуемого препарата и препарата сравнения. Каждую группу составляли 10 особей мужского пола. Одновременно вращали равное количество животных из каждой группы. Результаты представлены в таблице 2. Они свидетельствуют о том, что Ацизол достоверно уменьшал длительность восстановительного периода после вращения, т.е. улучшал способность вестибулярного аппарата к адаптации к радиальному ускорению.

Влияние препаратов на статико-силовую выносливость мышей

Влияние препаратов на статико-силовую выносливость изучали, регистрируя время висения мышей опытных и контрольной групп на вертикальной сетке. Животных тестировали после двухнедельного ежедневного введения препаратов. Критерием истощения статической силы считали время, когда мышь уже не могла удерживать вес своего тела и падала с сетки вниз (собственный вес мышей составлял среднем 28 г). Результаты эксперимента представлены в таблице 3. Они демонстрируют увеличение статической физической выносливости под воздействием всех препаратов.

Влияние на длительность плавания мышей

Плавание является тяжелой физической динамической нагрузкой, позволяющей оценить эффективность адаптогенов [14]. Оно осуществлялось с грузом (свинцовая трубка на резиновом кольце, прикрепляемая к корню хвоста), равным 5% от веса тела, при температуре воды 38-39°С. Критерием утомления и прекращения плавания считали первое "ныряние" с погружением носовых ходов в воду. В большой ванне одновременно плавали по 5 животных из каждой наблюдаемой группы. Тестирование мышей проводили через 14 дней после ежедневного введения препаратов (таблица 4).

Данные таблицы показывают, что препараты увеличивают продолжительность плавания, причем Ацизол не уступает зарегистрированному аналогу.

Антигипоксическое действие

Дыхание из замкнутого пространства - рересперация - является достаточно адекватной и простой моделью острой гипоксии [15, 16]. Животное, поглощая кислород из замкнутого пространства вследствие дыхания, вызывает развитие его дефицита - гипоксическую гипоксию, что позволяет оценивать исследуемый препарат по интегральным показателям летальности за определенное время наблюдения и устойчивости к дефициту кислорода (максимальной продолжительности жизни).

Животные помещались в банку объемом 250 мл, плотно закрытую стеклянной крышкой, смазанной герметиком. Фиксировали с помощью секундомера максимальную продолжительность жизни и симптомы танатогенеза. Банки с животными во время исследования находились в кондиционере, обеспечивающем постоянство условий эксперимента (температура + 20°С, влажность - 65-70%, атмосферное давление - 760±10 мм рт, ст). Контролем служили интактные животные.

После гибели у каждого животного ex tempore получали головной мозг, проводили его гемогенезацию (400 об/мин, 10 ходов пестика) [17] и определяли в гомогенате активность каталазы, уровень диеновых конъюгатов и гидроперекисей липидов [18, 19]. Эти показатели позволяют оценивать антиоксидантные свойства препарата.

Оказалось, что препараты достоверно увеличивают время жизни мышей, при этом стабилизировались показатели перекисного окисления липидов (снижались уровни малонового диальдегида и гидроперекисей липидов мозга) и восстанавливалась антиокислительная (каталазная) активность, что свидетельствует об увеличении резервной антиокислительной активности мозга (таблица 5).

Показатели функционального состояния адаптационных систем организма

Показатели, характеризующие энергетический обмен, обмен липидов и антитоксическую активность организма, представлены в таблице 6.

Представленные результаты свидетельствуют об адаптационной направленности действия изученных препаратов.

Иммобилизационный стресс

Иммобилизационный стресс моделировали на крысах-самцах после 20 дней ежедневного (включая выходные дни) введения препарата в дозе 10 мг/кг. Для этого крысы фиксировались на спине в течение 24 часов в боксах камеры Голубева. О развитии адаптационного синдрома судили по массе тела, массе тимуса, надпочечников, селезенки и количеству кровоизлияний (язв) в слизистой оболочке желудка [20]. Контролем служили интактные животные. Результаты представлены в таблице 7.

Оказалось, что после суточной иммобилизации у животных, получавших плацебо (дистиллированную воду), достоверно и значительно снизилась масса тела, на 30% увеличилась масса надпочечников, на 20% уменьшилась масса вилочковой железы и на 25% - масса селезенки. В желудке развились язвенные поражения и кровоизлияния. Это свидетельствовало о развитии адаптационного синдрома, т.е. стресса. Оба препарата предупреждали снижение массы тела, изменения массы надпочечников, вилочковой железы и селезенки. Количество язвенных поражений было в среднем на 80% меньше. Это позволяет говорить об антистрессовой активности препарата "Ацизол" при его профилактическом назначении. Положительное влияние на течение стресс-реакции еще раз подтверждает адаптогенную направленность фармакологической активности препарата "Ацизол".

Влияние Ацизола на физическую работоспособность и устойчивость организма к физическим нагрузкам

Исследование влияния Ацизола на физическую работоспособность, выносливость и устойчивость организма к продолжительным интенсивным нагрузкам проводилось при однократном и курсовом применении препарата. Состояние выраженного физического утомления достигалось прохождением кросса по пересеченной местности (10 км) с последующим преодолением полосы препятствий 100 м (в т.ч. 50 м с имитатором "пострадавшего" весом 70 кг).

Первое исследование проводилось с участием 31 здорового мужчины в возрасте от 18 до 23 лет, 17 человек в опытной группе и 14 в контрольной плацебо-группе. Прием Ацизола в дозе 120 мг (2 мл 6% раствора) и плацебо испытуемыми осуществлялся перорально двойным слепым методом непосредственно перед нагрузкой.

Сразу после кросса исследовали прямые показатели работоспособности (статический и динамический компоненты и кистевая мышечная выносливость), функциональное состояние сердечно-сосудистой системы, самочувствие. При исследовании прямых показателей работоспособности в контрольной группе после нагрузки выявлено значительное снижение показателя динамической работоспособности (до 68±5%, р<0.05) и резкое (до 23±5%, р<0.05) падение показателя статической выносливости (табл.8). Коэффициент выносливости по кистевой динамометрии снижался с 0.79±0.03 до 0.55±0.02 ед. (р<0.01).

Состояние сердечно-сосудистой системы характеризовалось утомлением миокарда (индекс Квааса увеличивался на 40% по отношению к фону). Повышалась активность симпатоадреналовой системы (частота сердечных сокращений увеличилась на 121%, индекс Робинсона на 80%). Выявлено достоверное снижение толерантности сердечно-сосудистой системы к физической нагрузке: индекс толерантности миокарда и PWC170 снижались на 40%, производительность механической работы сердца - на 27%, удельное максимальное потребление кислорода - на 17%. МОК увеличился к концу нагрузки на 23% от фонового значения.

Таким образом, интенсивная продолжительная физическая нагрузка вызвала развитие утомления, сопровождающегося значительным напряжением резервов сердечно-сосудистой системы.

Состояние ЦНС характеризовалось возрастанием субъективной оценки степени усталости почти в 3 раза (с 2,1±0,2 до 6,9±0,2 баллов по 10-балльной шкале), самочувствие и активность снизились на 12% и 9% соответственно (р<0,05.

Прием Ацизола оказал значительное влияние на показатели динамической и статической выносливости (увеличение от уровня плацебо на 43%, р<0,01 и 13% соответственно, р<0,05). Ацизол существенно повышал толерантность сердечно-сосудистой системы к нагрузкам. Он увеличивал на 15% значения показателей теста PWC170 и производительность механической работы сердца, на 18% - толерантность миокарда к нагрузкам (р<0,05). Ударный объем увеличился по сравнению с контролем на 18% при достоверном снижении метаболической потребности миокарда в кислороде (индекс Робинсона уменьшился на 38%, р<0,01) и повышении его функциональных резервов (индекс Квааса уменьшался на 17%, р<0,05), что закономерно привело к снижению частоты сердечных сокращений на 14% (р<0,01).

Такое влияние Ацизола на изученные показатели гемодинамики и физиологические индексы позволяет объяснить тот факт, что испытуемые из опытной группы прошли кросс за время на 12% быстрее (р<0,05), чем испытуемые плацебо-группы. Причем эта разница в скорости бега была наиболее выражена на последней трети маршрута, особенно во время преодоления полосы препятствий.

Полученные данные показывают, что однократное профилактическое применение Ацизола повышает выносливость и устойчивость организма к продолжительным интенсивным нагрузкам и улучшает их субъективную переносимость.

Во втором исследовании было изучено влияние курсового 10-дневного применения ацизола (перорально по 120 мг один раз в день после еды) на физическую выносливость и устойчивость организма к продолжительным интенсивным нагрузкам. Исследование проводилось с участием 34 здоровых мужчин в возрасте от 18 до 23 лет, из них 20 человек - в опытной и 14 - в плацебо-группе. Исследовали прямые показатели работоспособности (статический и динамический компоненты и кистевая мышечная выносливость), функциональное состояние сердечно-сосудистой системы, субъективную оценку самочувствия. Состояние выраженного физического утомления достигалось через 4 суток после последнего приема Ацизола и плацебо, как и в предыдущем исследовании, прохождением кросса по пересеченной местности (10 км) с последующим преодолением полосы препятствий 100 м (в т.ч. 50 м с имитатором "пострадавшего" весом 70 кг). Исследование проводилось сразу после окончания кросса.

Результаты исследований показали, что после курсового применения Ацизола показатели динамической и статической выносливости в опытной группе превышают на 18 и 24% аналогичные показатели в плацебо группе (фиг.1).

Прием Ацизола оказал положительное влияние на показатели кистевой физической выносливости (увеличение от уровня плацебо на 23%, р<0,05). Было установлено, что Ацизол увеличивал на 16% значения показателей теста PWC170, производительность механической работы сердца и толерантность миокарда к нагрузкам на 11%. Выявлено достоверное повышение его функциональных резервов (индекс Квааса уменьшился на 17%), что закономерно привело к снижению частоты сердечных сокращений на 14%. Проба Штанге была на 17% выше по сравнению с плацебо-группой.

Эти данные свидетельствуют о положительном влиянии курсового применения Ацизола на толерантность сердечно-сосудистой системы к нагрузкам.

В опытной группе также отмечалось хорошее самочувствие, активность, настроение, кроме того препарат значительно облегчал переносимость физических нагрузок, что проявлялось в снижении чувства мышечной усталости, одышки во время бега, снижении болевых проявлений в правом подреберье, легче удерживался ровный темп бега (фиг.2).

Субъективная оценка чувства усталости была достоверно ниже, чем у испытуемых плацебо-группы.

Полученные данные позволяют говорить о том, что положительное влияние Ацизола на физическую работоспособность, выносливость и устойчивость организма к продолжительным интенсивным нагрузкам сохраняется через несколько суток после окончания курсового приема препарата.

Таким образом, вышеприведенные данные свидетельствуют о высокой активности Ацизола в качестве адаптогена и его преимуществах перед известным фармакологическим аналогом.

Литература

1. Регистр Лекарственных средств России. Энциклопедия лекарств, 10 выпуск, 2003 г., стр.1063.

2. Там же, стр.1064.

3. Патент № 2038079 "Антидот окиси углерода", МПК А 61 К 32/515, 1995 г.

4. Кудрин А.Н. Физиол. жур. СССР, 1953, т.39, № 3, с.309-318.

5. Васильев К.Г. Гиг. труда и проф. забол., 1957, № 2, с.19-24.

6. Брехман И.И. Женьшень. Л.: 1957, с.30-33.

7. Руководство по физиологии. Адаптация человека к экстремальным условиям среды. Под ред. О.Г.Газенко. М., "Наука", 1979, с.333-336.

8. Ellouk-Achard S. et al. Ex vivo and in vitro models in acetaminophen hepatotoxicity studies. Relationship between glutathione depletion, oxidative stress and disturbances in calcium homeostasis and energy metabolism. Archives of Toxicology. Supplement. 1995, 17, pp.209-214.

9. Тимер М., Гедрих И. Фармакология и токсикол., 1969, № 5, с.602-604.

10. Кигель Г.Б. Харабаджахьян А.В. Показатели биологической нормы для лабораторных животных. Ростов-на-Дону, 1978, 95 с.

11. Клиническая оценка лабораторных тестов. Под ред. Н.У.Тица, М., "Медицина", 1986, 480 с.

12. Умбрейт В.В., Буррис Р.Х. и др. Монометрические методы изучения тканевого обмена. М., 1957, 356 с.

13. Лабораторные методы исследования в клинике. Справочник под ред. В.В. Меньшикова. М., "Медицина", 1987, с.141-143.

14. Рылова М.Л. Методы исследования хронического действия вредных факторов среды в эксперименте. М.: "Медицина", 1964, 228 с.

15. Руководство по физиологии. Экологическая физиология человека. Адаптация человека к экстремальным условиям среды. Под ред. О.Г.Газенко. М., "Наука", 1979, с.333-336.

16. Руководство к практическим занятиям по патологической физиологи. Под ред. О.М.Павленко. М., "Медицина", 1974, с.174-175.

17. Tyson C.A., Luman K.D., Stephens R.J Age-related differences in G-SH-shuttle enzymes in NO2-or О3-exposed rat lungs Arch. Оз. Env. Health, 1982, Vol.37., No 3, pp.167-176.

18. Методы исследований в профпатологии. Под ред. О.Г.Архиповой. М., 1988, с.156-158.

19. Современные методы в биохимии. Под ред. В.Н.Ореховича. М., "Медицина", 1977, с.62-64.

20. Кигель Г.Б., Харабаджахьян А.В. и др. Показатели биологической нормы для лабораторных животных. Ростов-на-Дону, 1978, с.25-28.

Таблица 1
Продолжительность гексеналового сна мышей после предварительного введения препаратов (М±m)
Группы животныхДлительность сна, минКонтроль24.8±2.1Ацизол15.5±1.3*Элеутерококк20.2±2.0* - достоверные отличия от контроля при Р<0.05Таблица 2
Длительность восстановления способности к прямолинейному поступательному движению мышей после вращения в центрифуге 15 сек со скоростью 600 об/мин (М±m)
Группы животныхВремя восстановления, секКонтроль210±8Ацизол145±5*Элеутерококк165±7** - достоверные отличия от контроля при Р<0.05Таблица 3
Физическая выносливость мышей в тесте статической силовой нагрузки собственным весом (М±m)
Группы животныхДлительность висения, минКонтроль22.0±1.5Ацизол28.5±1.0*Элеутерококк27.5±1.0** - достоверные отличия от контроля при Р<0.05

Таблица 4
Длительность плавания мышей с грузом после введения препаратов (М±m)
Группы животныхДлительность плавания, минКонтроль27.8±5.5Ацизол43.8±6.6*Элеутерококк40.2±6.3** - достоверные отличия от контроля при Р<0.05Таблица 5
Эффективность препаратов в тесте "баночной гипоксии" (М±m)
Группы животныхПоказательПродолжительность жизни, минМалоновый диальдегид, нмоль/мг белкаКаталаза, мкмоль Н2O2/мг минГидроперекиси липидов, ед. опт. Плотности при 480 имИнтактные-2.77±0.269.57±0.580.11±0.01Контроль34.2±2.64.61±0.553.50±0.500.50±0.04Ацизол49.0±1.0*3.19±0.47*5.55±0.50*0.25±0.03*Элеутерококк44.2±1.0*3.47±0.414.76±0.58*0.40±0.03* - достоверные отличия от контроля при Р<0.05

Таблица 6
Показатели функционального состояния адаптационных систем организма
ПоказателиГруппы животныхКонтрольАцизолЭлеутерококкМасса тела, г27.0±1.426.5±1.327.2±1.1Общие липиды, сыворотка, г/л3.6±0.23.5±0.12.9±0.1*Холестерин, сыворотка, ммоль/л1.64±0.321.59±0.331.60±0.28Билирубин общий, сыворотка, ммоль/л3.1±0.22.9±0.23.4±0.1-SHгр, сыворотка, мг %1634±831680±801686±79Восстановленный глутатион, печень, мг %165±12166±10153±10Гликоген, печень, мг %2560±1102520±1152400±115Глюкоза, сыворотка, мг %92±1591±1883±13Глюкоза, мышцы, мг %135±27145±37155±29АТФ, сердце, мкмоль/г2.5±0.23.0±0.2*2.3±0.1АТФ, мышцы, мкмоль/г5.3±0.25.9±0.4*5.1±0.3Интенсивность тканевого дыхания, сердце, мкл O2/100 мг/час63±667±660±6Интенсивность тканевого дыхания, мышцы, мкл O2/100 мг/час21±328±522±2* - достоверные отличия от контроля при Р<0.05

Таблица 7
Масса тела, надпочечников, тимуса, селезенки и количество кровоизлияний в слизистой оболочке желудка у крыс-самцов в тесте иммобилизационного стресса
Препарат№№ животныхМасса тела, гМ±mНадпочечники, мгM±mТимус, мгМ±mСелезенка, мгM±mКровоизлиянияM±m123456789101112Контроль (интактные животные)1
2
3
4
5
6
7
8
160
170
165
175
180
155
150
160



164±4
38
42
37
35
40
35
33
37



37±1
13
14
11
10
15
11
10
9



12.0±
1.0
240
220
230
210
215
230
210
210



200±5



-



0
Плацебо (стресс)1
2
3
4
5
6
7
8
140
135
150
150
145
155
150
147



146±3

P1,2<
0.05
48
52
56
58
57
58
54
50



54±2

P1,2<
0.05
9
8
9
7
8
5
7
8



8.0±
0.5

P1,2<
0.05
170
200
150
165
170
175
160
155



168±6

P1,2<
0.05
12
10
8
14
15
10
9
11



11±1

P1,2<
0.05

Продолжение таблицы 7123456789101112Ацизол, 10 мг/кг (стресс)1
2
3
4
5
6
7
8
165
170
150
150
155
170
165
150



159±3

P1,4>
0.05
Р2,4<
0.05
50
42
39
40
42
36
35
37



40±2

P1,4>
0.05
Р2,4<
0.05
12
14
11
9
8
10
11
12



10.9±0.7

P1.4>
0.05
Р2,4>
0.05
170
190
200
180
210
230
210
215



201±8

P1,4>
0.05
P2,4<
0.05
1
0
2
1
3
2
4
5



2±1


Р2.4<
0.05

Таблица 8
Влияние ацизола на показатели физической выносливости, работоспособности и параметры гемодинамики после продолжительной нагрузки (% к фону)
ПоказательПлацебо N=14Ацизол N=17% к плацебоСтатическая выносливость,23±5*33±5143**Динамическая выносливость68±3*77+5113*Кистевая выносливость68±5**79±15116PWC17062±5*73±5115*МОК123±8*124±13101СО104±5123±7118*МПК удельное83±3*87±5104Производительность механической работы сердца73±5*83±3114*ИТМ60±3**71±3*118*ИК140±8**116±1083ИР180+22*112±1862**Проба Штанге69±19*81±15115*Примечание: Отличие статистически достоверно: * - р<0,05, ** - р<0,01

Похожие патенты RU2279877C2

название год авторы номер документа
КОРОНАРОАКТИВНОЕ АНТИИШЕМИЧЕСКОЕ И АНТИАРИТМИЧЕСКОЕ СРЕДСТВО 2005
  • Бабаниязов Хайрулла Хайдарович
  • Зайцева Мария Анатольевна
  • Нечипоренко Сергей Петрович
  • Трофимов Борис Александрович
  • Баринов Владимир Александрович
  • Пронина Наталья Васильевна
  • Бабаниязова Замира Хайруллаевна
  • Станкевич Валерий Константинович
  • Байкалова Людмила Валентиновна
  • Грачев Николай Сергеевич
  • Гришак Дмитрий Дмитриевич
  • Некрасов Михаил Сергеевич
RU2290927C1
КАПСУЛИРОВАННАЯ ФОРМА АЦИЗОЛА 2005
  • Пронина Наталья Васильевна
  • Бабаниязов Хайрулла Хайдарович
  • Нечипоренко Сергей Петрович
  • Трофимов Борис Александрович
  • Баринов Владимир Александрович
  • Бабаниязова Замира Хайруллаевна
  • Байкалова Людмила Валентиновна
  • Станкевич Валерий Константинович
  • Некрасов Михаил Сергеевич
  • Хамидуллин Наиль Мансурович
  • Гришак Дмитрий Дмитриевич
  • Грачев Николай Сергеевич
RU2290928C1
ПРИМЕНЕНИЕ АЦИЗОЛА В КАЧЕСТВЕ ГЕПАТОПРОТЕКТОРА 2004
  • Бабаниязов Х.Х.
  • Нечипоренко С.П.
  • Трофимов Б.А.
  • Станкевич В.К.
  • Бабаниязова З.Х.
  • Баринов В.А.
  • Колбасов С.Е.
  • Некрасов М.С.
  • Пронина Н.В.
  • Хамидуллин Н.М.
  • Байкалова Л.В.
  • Гришак Д.Д.
RU2260427C1
СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ ОТРАВЛЕНИЙ И ИХ ОСЛОЖНЕНИЙ 2006
  • Бабаниязов Хайрулла Хайдарович
  • Ильяшенко Капиталина Константиновна
  • Леженина Наталья Федоровна
  • Баринов Владимир Александрович
  • Трофимов Борис Александрович
  • Нечипоренко Сергей Петрович
  • Станкевич Валерий Константинович
  • Байкалова Людмила Валентиновна
  • Бабаниязова Замира Хайруллаевна
  • Пронина Наталья Васильевна
  • Шилов Валентин Николаевич
RU2331417C1
РАСТВОР ДЛЯ ИНЪЕКЦИЙ 2004
  • Бабаниязов Хайрулла Хайдарович
  • Нечипоренко Сергей Петрович
  • Трофимов Борис Александрович
  • Бабаниязова Замира Хайруллаевна
  • Баринов Владимир Александрович
  • Пронина Наталья Васильевна
  • Станкевич Валерий Константинович
  • Байкалова Людмила Валентиновна
  • Хамидуллин Наиль Мансурович
  • Некрасов Михаил Сергеевич
  • Гришак Дмитрий Дмитриевич
  • Журкевич Инна Константиновна
RU2276978C2
ПРОИЗВОДНЫЕ 1-АЛКЕНИЛИМИДАЗОЛА 2008
  • Трофимов Борис Александрович
  • Самойлов Николай Никифорович
  • Бабаниязов Хайрулла Хайдарович
  • Станкевич Валерий Константинович
  • Нечипоренко Сергей Петрович
  • Бабаниязова Замира Хайруллаевна
  • Пронина Наталья Васильевна
  • Баринов Владимир Александрович
  • Стратиенко Елена Николаевна
  • Лебедева Светлана Анатольевна
  • Жихарев Владимир Федорович
RU2397175C1
АНТИДОТ ОКИСИ УГЛЕРОДА 2015
  • Краснов Константин Андреевич
  • Мелихова Марина Валентиновна
  • Баринов Владимир Александрович
RU2581467C1
СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ ПАРОДОНТА 2005
  • Некрасов Михаил Сергеевич
  • Бабаниязов Хайрулла Хайдарович
  • Бобр Ирина Сергеевна
  • Нечипоренко Сергей Петрович
  • Трофимов Борис Александрович
  • Баринов Владимир Александрович
  • Пронина Наталья Васильевна
  • Бабаниязова Замира Хайруллаевна
  • Станкевич Валерий Константинович
  • Байкалова Людмила Валентиновна
  • Гришак Дмитрий Дмитриевич
  • Хамидуллин Наиль Мансурович
  • Шавва Игорь Иванович
RU2301062C2
СПОСОБ ПРОФИЛАКТИКИ ТОКСИЧЕСКОГО ДЕЙСТВИЯ КАДМИЯ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ 2009
  • Кокаев Ромеш Иванович
  • Брин Вадим Борисович
  • Бабаниязов Хайрулла Хайдарович
  • Пронина Наталья Васильевна
RU2410763C1
ФАРМАКОЛОГИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ПОВЫШЕНИЯ АДАПТАЦИОННЫХ ВОЗМОЖНОСТЕЙ ОРГАНИЗМА В УСЛОВИЯХ ФИЗИЧЕСКИХ НАГРУЗОК 2014
  • Минзанова Салима Тахиятулловна
  • Миронов Владимир Федорович
  • Выштакалюк Александра Борисовна
  • Назаров Наиль Госманович
  • Миронова Любовь Геннадьевна
  • Зобов Владимир Васильевич
RU2564949C1

Иллюстрации к изобретению RU 2 279 877 C2

Реферат патента 2006 года АДАПТОГЕН

Предложено: применение ацизола (бис(1-винилимидазол-N) цинка диацетата) в качестве адаптогена. Ацизол ранее был известен как антидот. Изобретение отличается тем, что ацизол превосходит элеутерококк по активности в отношении показателей функционального состояния адаптационных систем организма за счет обеспечения более высокой интенсивности тканевого дыхания, улучшения энергетического обмена и восстановительных процессов. 2 ил., 8 табл.

Формула изобретения RU 2 279 877 C2

Применение ацизола в качестве адаптогена.

Документы, цитированные в отчете о поиске Патент 2006 года RU2279877C2

СПОСОБ ЛЕЧЕНИЯ ОСТРЫХ РЕСПИРАТОРНЫХ ВИРУСНЫХ ЗАБОЛЕВАНИЙ И ГРИППА 1995
  • Смирнов Вячеслав Сергеевич
  • Стукань Игорь Андреевич
RU2107498C1
СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ ПСОРИАЗА 2001
  • Бабаниязов Х.Х.
  • Бабаниязова З.Х.
  • Трофимов Б.А.
  • Станкевич В.К.
  • Байкалова Л.В.
  • Нечипоренко С.П.
  • Гришак Д.Д.
  • Шилов В.Н.
  • Баринов В.А.
RU2204392C1
АНТИДОТ ОКИСИ УГЛЕРОДА 1988
  • Домнина Е.С.
  • Скушникова А.И.
  • Воронков М.Г.
  • Урюпов О.Ю.
  • Тиунов Л.А.
  • Руказенков Э.Д.
  • Чумаков В.В.
  • Арутюнян С.И.
  • Соколовская Т.М.
  • Серов В.А.
  • Жилеев В.Т.
RU2038079C1
Способ получения 1-оксадетиацефалоспоринов или их солей 1977
  • Масаюки Нарисада
  • Ватару Нагата
SU1056903A3
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
СОТНИКОВА Е.П
Фармакологическая характеристика адаптогенного действия новых биогенных препаратов
Автореферат дисс
д-ра мед
наук
Киев, 1989, с.3-36.

RU 2 279 877 C2

Авторы

Бабаниязов Хайрулла Хайдарович

Баринов Владимир Александрович

Нечипоренко Сергей Петрович

Трофимов Борис Александрович

Станкевич Валерий Константинович

Ермаков Алексей Рудольфович

Пронина Наталья Васильевна

Бабаниязова Замира Хайруллаевна

Некрасов Михаил Сергеевич

Хамидуллин Наиль Мансурович

Байкалова Людмила Валентиновна

Гришак Дмитрий Дмитриевич

Даты

2006-07-20Публикация

2004-11-04Подача