Способ направлен на получение пористых демпфирующих материалов на железной или медной основе с пористостью 40-55%. Указанные материалы могут использоваться в качестве конструктивных элементов для защиты электронной аппаратуры от вибрации, а также для поглощения энергии одиночных ударов.
Изобретение относится к области порошковой металлургии, в частности к получению высокопористых материалов.
Известен способ получения спеченного железа непосредственно из оксидов железа путем измельчения и прессования исходных оксидных материалов и последующего одновременно проводимого восстановления и спекания при температуре 850°С в токе водорода в течение 5 часов при скорости подъема температуры 50-100°С/ч и скорости охлаждения 150-300°С/ч. Для дополнительного повышения плотности и придания изделиям заданной формы проводят штамповку. Такое решение позволяет сократить технологическую цепочку за счет исключения операций получения металлического порошка железа: подготовки оксидного сырья, его восстановления, дробления и размола железной губки, классификации порошка (Патент Франции №2405995, заявл. 13.10.77, №7730807, опубл. 11.05.79).
К недостаткам этого метода можно отнести большую длительность процесса (16-27 часов), обусловленную необходимостью предотвращения растрескивания получаемых изделий, а также применение специального оборудования для проведения процесса в контролируемой восстановительной атмосфере и необходимость дополнительной обработки после спекания.
Также известен способ получения спеченного высокопористого железа из железной окалины путем измельчения и прессования оксидного сырья и последующего одновременно проводимого восстановления и спекания в засыпке из древесного угля. (Либенсон Г.А., Лопатин В.Ю. Исследование процесса получения пористых металлических материалов из оксидов. Материалы международной научно-технической конференции "Порошковые и композиционные материалы, структура, свойства, технологии". Новочеркасск, 2002. - С.65-67).
Данный способ по совокупности сходных признаков: размол окалины; прессование из полученного порошка изделий; помещение спрессованных изделий в восстановительную засыпку; термическую обработку изделий в засыпке, совмещающую процессы восстановления оксидной составляющей и спекание образующейся металлической фазы в пористый каркас, принят за прототип.
Преимуществом данного способа является простота реализации (не требуется подвод газа-восстановителя извне и нет необходимости в использовании специального печного оборудования с контролируемой атмосферой), недостатком - низкое качество получаемых изделий, вызванное плохо контролируемым процессом восстановления оксидной составляющей, что требует дополнительных операций калибровки и повторного спекания.
Изобретение решает задачу термической стабилизации процесса с техническим результатом - сокращение количества переделов за счет устранения операций повторного прессования-калибровки и повторного спекания. Поставленная задача решается тем, что в способе получения изделий из пористого демпфирующего материала, включающем размол оксидного материала (окалины), прессование из полученного порошка изделий, помещение спрессованных изделий в засыпку из восстановительного материала, термическую обработку спрессованного изделия в засыпке, согласно изобретению размолотую окалину подвергают предварительной механической активации, например, в центробежной планетарной мельнице, а спрессованные изделия перед восстановлением подвергают отжигу в инертной или восстановительной атмосфере при температуре ниже температуры восстановления оксидной составляющей изделия.
Задача решается также тем, что процесс предварительной активации окалины совмещают с ее размолом в энергонагруженном аппарате, а отжиг изделия совмещают с процессом спекания, проводя нагрев изделия в восстановительной атмосфере до температуры изотермической выдержки со скоростью, обеспечивающей отжиг наведенных при активации дефектов, например, не превышающей 10-20°С/мин.
Технический результат достигается способом получения изделий из пористого демпфирующего материала, включающем размол оксидного материала (окалины), прессование спрессованного изделия из полученного материала, помещение спрессованных изделий в засыпку из восстановительного материала, термическую обработку изделий в засыпке, совмещающую процессы восстановления оксидной составляющей и спекание образующейся металлической фазы в пористый каркас, при этом размолотый порошок окалины подвергают предварительной механической активации (например, в центробежной планетарной мельнице ЦПМГ), а спрессованные изделия перед восстановлением - термическому отжигу при температурах ниже температуры совмещенного процесса восстановления-спекания.
Предложенный способ заключается в том, что в процессе активации в обрабатываемом материале накапливается дополнительная энергия, что выражается в изменении межатомных расстояний, изменении размеров области когерентного рассеивания (ОКР), изменении доли микроискажений в кристаллической решетке.
В процессе термического отжига изделий, спрессованных из предварительно активированного порошка, запасенная энергия расходуется на релаксацию как наведенных при активировании дефектов, так и дефектов, уже имевшихся в исходном неактивированном материале. В результате снижается химическая активность восстанавливаемого материала до уровня ниже, чем в исходном неактивированном оксиде, а следовательно, скорость его реагирования с газом-восстановителем.
Снижение скорости химического реагирования создает условия для равномерного (по всей глубине изделия) восстановления оксидной составляющей. Тем самым снижается опасность коробления изделия, а следовательно, и необходимость в его калибровке и последующем дополнительном спекании.
Данные, иллюстрирующие изменение активности оксидной составляющей после активации и термического отжига, представлены в таблице 1.
С=13,744
С=13,735
С=13,743
Представленные данные показывают, что предварительная механическая активация увеличивает долю запасенной энергии за счет микроискажений в 6-10 раз, а за счет изменения поверхностной энергии: для магнетита в 207 раз; для гематита в 408 раз, а для вюстита в 35 раз.
Отжиг активированного материала снижает долю микроискажений практически до исходного состояния, а долю поверхностной энергии (по сравнению с активированным материалом): для магнетита в 206 раз (т.е. практически до исходного уровня); для гематита в 3160 раз (т.е. в 8 раз ниже исходного неактивированного материала), что и определяет снижение скорости восстановления оксидной фазы.
Снижение химической активности оксидной составляющей определяет равномерность ее восстановления по всему объему изделия, а это, в свою очередь, предотвращает коробление и растрескивание в процессе спекания восстановленной металлической фазы. В результате практически не происходит изменения размеров изделия. Термическая стабильность процесса иллюстрируют примеры практического исполнения, представленные в таблице 2.
Возможно совмещение процессов размола и активации окалины и процессов отжига и восстановления оксидной составляющей. При этом для обеспечения условий отжига скорость нагрева изделия должна составлять 10-20°С/мин. Скорость нагрева ниже 10°С/мин нецелесообразна по экономическим соображениям, а выше 20°С/мин не обеспечивает полноту протекания процесса отжига дефектной структуры.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСНО-УПРОЧНЕННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МЕДИ | 1997 |
|
RU2116370C1 |
Способ получения катализатора для восстановления окиси азота | 1979 |
|
SU886965A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НИТРИДА КРЕМНИЯ | 2013 |
|
RU2540674C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРИЧЕСКИХ РАЗРЫВНЫХ КОНТАКТОВ И МАТЕРИАЛ | 2017 |
|
RU2691452C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗНОГО ПОРОШКА | 2008 |
|
RU2364469C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЖАРОПРОЧНЫХ И ЖАРОСТОЙКИХ ДИСПЕРСНО-УПРОЧНЕННЫХ ИЗДЕЛИЙ НА ОСНОВЕ МЕДИ | 1997 |
|
RU2117063C1 |
СПОСОБ ФОРМИРОВАНИЯ ПОРОШКОВЫХ ИЗДЕЛИЙ ИЛИ МАТЕРИАЛОВ | 2008 |
|
RU2432227C2 |
СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ДИБОРИДА ТИТАНА | 1993 |
|
RU2034928C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОРИСТОСТИ | 2017 |
|
RU2691207C1 |
СПОСОБ ПОДАВЛЕНИЯ РЕКРИСТАЛЛИЗАЦИИ В ПРОЦЕССЕ ГОРЯЧЕГО ПРЕССОВАНИЯ | 2005 |
|
RU2304486C1 |
Изобретение относится к порошковой металлургии, в частности к получению высокопористых материалов. Может использоваться при изготовлении конструктивных элементов для защиты электронной аппаратуры от вибрации, а также для поглощения энергии одиночных ударов. Способ получения изделий из пористого демпфирующего материала включает размол оксидного материала. После размола порошок подвергают предварительной механической активации. Из полученного порошка прессуют изделие и размещают его в засыпке из восстановительного материала. Затем изделие подвергают отжигу в инертной или восстановительной атмосфере при температуре ниже температуры восстановления-спекания, после чего осуществляют процесс восстановления-спекания. Техническим результатом является термическая стабилизация процесса и сокращение количества переделов. 1 з.п. ф-лы, 2 табл.
ЛИБЕНСОН Г.А | |||
и др | |||
Исследование процесса получения пористых металлических материалов из оксидов | |||
Порошковые и композиционные материалы, структура, свойства, технологии получения: Материалы международной научно-технической конференции, г | |||
Новочеркасск: ЮРГТУ (НПИ), 2002, стр.65-67 | |||
Способ получения демпфирующего материала на основе никеля | 1989 |
|
SU1687374A1 |
JP 4248036 А, 03.09.1992 | |||
JP 8277365 А, 22.10.1996 | |||
JP 10315392 А, 02.12.1998. |
Авторы
Даты
2006-07-20—Публикация
2004-12-09—Подача