СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОРИСТОСТИ Российский патент 2019 года по МПК C04B38/06 C04B35/111 C04B35/486 

Описание патента на изобретение RU2691207C1

Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения пористых керамических материалов, допускающих их применение в качестве фильтрующего материала.

Известен способ получения пористого керамического материала для использования в качестве заменителя твердой костной ткани (патент US 7482390, МПК С04В 38/06, опубл. 27.01.2009). В известном способе спекаемый керамический материал, например, оксид алюминия или оксид циркония, смешивают с вязким полимерным золем, полученную смесь формуют, сушат и спекают.

Недостатком известного пористого керамического материала является присутствие только унимодальной пористости. Поры, образованные таким способом, имеют низкую связность и наследуют морфологию частиц порообразователя.

Известен способ получения пористого керамического материала (патент RU 2476406, МПК С04В 38/00, С04В 35/486, С04В 35/111, опубл. 27.02.2013), включающий приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Al2O3 или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль Аl(ОН)3 или Zr(OH)4 в количестве от 1 до 50% от объема смеси. Для придания смеси формовочных свойств добавляют дистиллированную воду. Формование изделия требуемой конфигурации проводят прессованием при давлении 12-25 кН, спекают при температуре 1450-1600°С с изотермической выдержкой в течение 1-5 часов.

Недостатком известного изобретения является образование унимодальной пористости.

Арсенал известных способов получения пористых керамических материалов с разнообразной мультимодальной поровой структурой в сочетании с развитой связной пористостью ограничен.

Известен способ получения керамического материала с бимодальным распределением пористости (патент US 9776169, кл. В01J 21/04, опубл. 03.10.2017), включающий приготовление смеси из ультрадисперсного оксидного керамического порошка (преимущественно, оксида алюминия), неорганического (бемит) и органического порообразователей, формование изделия, низкотемпературный отжиг для удаления порообразователя и спекание при температуре 1200-1600°С.

Недостатком известного изобретения является изменение химического состава при получении пористой керамики на основе иных оксидов, помимо Al2O3, в виде продуктов термического распада неорганических порообразующих частиц.

Перспективным направлением совершенствования технологии является использование оксидов других элементов, а в качестве неорганического порообразователя гидроксида используемого элемента в порошковой форме.

Технологической задачей заявляемого изобретения является расширение арсенала технических средств для получения пористой керамики с бимодальным распределением пористости, позволяющей получить поровую структуру, состоящую из крупных и мелких связных пор.

Указанный технический результат достигается тем, что получение пористой керамики с бимодальным распределением пористости включает приготовлении смеси из ультрадисперсного оксидного керамического порошка и добавок-порообразователей, при этом для обеспечения создания крупных пор в смесь вводится термоудаляемая дисперсная органическая добавка-порообразователь, а для формирования мелких пор в смесь вводится дисперсный гидроксид того же элемента, что и спекаемая керамика, разлагающийся при низкотемпературном отжиге на оксид и водяной пар. При этом выгорающие частицы органического порообразователя оставляют пустоты - поры, морфология которых наследует морфологию органических частиц порообразователя. Таким образом, структура, размер крупных пор, фильтрующая способность получаемого материала зависят от выбора материала органического порообразователя и его механического состояния, например, частицы сферической формы и среднего размера 50 мкм сверхвысокомолекулярного полиэтилена (СВМПЭ), или частицы неправильной формы и среднего размера 30 мкм канифоли. Разложение гидроксида приводит к уменьшению удельного объем его частиц и образованию пустот - пор и связующих их каналов с выходом водяного пара из отжигаемой керамики.

Раскрытие сущности изобретения

Пористые керамические материалы широко используются в медицине, в качестве материала для протезирования костной ткани, в нефтегазовой отрасли, в качестве фильтрующего материала, в машиностроении в качестве теплозащитного материала. В этих случаях морфология, размер пор и объем порового пространства являются одними из основных эксплуатационных характеристик, определяющих сферу применения пористых материалов.

Заявляемый способ позволяет получить керамический материал с развитой связной бимодальной пористостью и высокими механическими характеристиками.

Сущность изобретения заключается в том, что сначала готовят исходную смесь. Для этого ультрадисперсный керамический оксидный порошок на основе элемента, выбранного из ряда: Zr, Mg, Аl, смешивают с порошком органического порообразователя и с дисперсным порошком гидроксида того же элемента, что и оксидный керамический порошок. Суммарная объемная доля порообразующих добавок может достигать 70 об.%. Затем изделие формуют холодным одноосным прессованием в стальной пресс-форме, после чего проводят низкотемпературный отжиг прессовок в печи с воздушной атмосферой с промежуточной выдержкой 300оС, чтобы удалить продукты термического разложения порообразующих добавок. Для завершения процесса проводят окончательное спекание керамики в печи с воздушной средой при конечной температуре от 1500 до 1650оС и выдержкой в течение 1 часа.

В качестве добавки-порообразователя крупной фракции можно использовать органические добавки со средним размером частиц до 150 мкм и низкой температурой выгорания, которая должна быть ниже температуры плавления спекаемой керамики.

Предварительный низкотемпературный отжиг получаемого пористого керамического материала с бимодальным распределением пористости можно проводить в керамическом тигле в печи с воздушной средой, полностью погрузив заготовку, сформованную в стальной пресс-форме холодным одноосным прессованием, в мелкодисперсный керамический порошок-засыпку на основе оксида того же материала, что и получаемая пористая керамика. Это способствует равномерному удалению продуктов термического разложения порообразующих добавок и снижает вероятность возможного растрескивания и деформации керамики с бимодальным распределением пористости. Керамический порошок-засыпка должен полностью покрывать всю внешнюю площадь отжигаемого керамического материала.

Термообработка приводит к разложению гидроксида на оксид и водяной пар, оставляющий поры и связующие их каналы. Наличие органической добавки-порообразователя, напрмер, порошка СВМПЭ или порошка канифоли, позволяет получать крупные поры необходимых размеров и формы.

В качестве добавки-порообразователя мелкой пористости целесообразно использовать гидроксид того же элемента, что и для получения керамики, со средним размером частиц равным среднему размеру частиц используемого оксида.

После высокотемпературного спекания исключается наличие нежелательных примесей в виде продуктов термического распада неорганических порообразующих частиц, которые делают невозможным применение пористого керамического материала в качестве материала медицинского назначения или фильтра.

Выбором размерного и количественного соотношения исходных компонентов можно получить пористость конечного продукта до 80%.

Пример конкретного выполнения изобретения.

Получение керамики Аl2O3 с пористостью 60% и бимодальным распределением пор осуществляют в следующем порядке:

Сначала проводят механическое смешивание 40 об.% керамического порошка оксида алюминия Аl2O3 со средним размером частиц 50 мкм, 40 об.% керамического порошка гидроксида алюминия Аl(ОН)3 со средним размером частиц 50 мкм и 20 об.% порошка СВМПЭ со средним размером частиц 100 мкм.

Затем осуществляют одноосное холодное прессование порошковой смеси в стальной пресс-форме при давлении 250 МПа без добавления связующего и получают образцы для дальнейшей обработки. Полученные образцы помещают в керамический тигель, полностью покрывают керамическим порошком-засыпкой Аl2O3 и подвергают их низкотемпературному отжигу. Низкотемпературный отжиг осуществляют по заданному режиму при температуре, равной 60% от температуры спекания керамики с промежуточной выдержкой при 300оС в течение 1 часа. Затем извлекают полученные керамические образцы из тигля и после остывания проводят очистку от порошка-засыпки. Завершающим этапом является высокотемпературное спекание в печи с воздушной средой при конечной температуре 1600оС и выдержкой в течение 1 часа.

В результате получают прочный пористый керамический материал с бимодальным распределением пористости: материал содержит поры со средним размером 10 мкм и поры со средним размером 100 мкм.

Использованные источники:

1 Пат. US 7482390 (аналог 1);

2 Пат. RU 2476406 (аналог 2);

3 Пат. US 9776169, кл. В01J 21/04, опубл. 03.10.2017 (прототип).

Похожие патенты RU2691207C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОЙ ПОРИСТОЙ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ ЭНДОПРОТЕЗИРОВАНИЯ 2020
  • Федоренко Надежда Юрьевна
  • Калинина Марина Владимировна
  • Шилова Ольга Алексеевна
  • Пономарева Мария Антоновна
RU2741918C1
Способ получения пористого керамического материала с трехуровневой поровой структурой 2019
  • Кульков Сергей Николаевич
  • Буяков Алесь Сергеевич
  • Буякова Светлана Петровна
RU2722480C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2010
  • Мельникова Галина Васильевна
  • Жуков Илья Александрович
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Молчунова Лилия Михайловна
  • Соболев Игорь Александрович
  • Козлова Анна Валерьевна
  • Клевцова Екатерина Владимировна
RU2476406C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ СТРУКТУРЫ КЕРАМИЧЕСКОГО МАТЕРИАЛА 2011
  • Шемякина Ирина Владимировна
  • Кирьякова Марина Николаевна
  • Аронов Анатолий Маркович
  • Медведко Олег Викторович
RU2483043C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МЕМБРАН НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ ФИЛЬТРАЦИИ ЖИДКОСТЕЙ И ГАЗОВ 2017
  • Морозова Людмила Викторовна
  • Калинина Марина Владимировна
  • Шилова Ольга Алексеевна
RU2640546C1
Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света 2023
  • Кравцов Александр Александрович
  • Супрунчук Виктория Евгеньевна
  • Тарала Людмила Викторовна
  • Дзиов Давид Таймуразович
  • Малявин Федор Федорович
  • Кунгурцев Константин Вячеславович
  • Ковалев Андрей Андреевич
RU2818556C1
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО МЕМБРАННОГО ФИЛЬТРА 2004
  • Хабас Тамара Андреевна
  • Мельников Александр Григорьевич
  • Неввонен Ольга Владимировна
  • Ильин Александр Петрович
RU2282490C2
Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа 2018
  • Нестеров Алексей Анатольевич
  • Панич Евгений Анатольевич
RU2702188C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО БИОМАТЕРИАЛА НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2015
  • Буякова Светлана Петровна
  • Григорьев Михаил Владимирович
  • Кульков Сергей Николаевич
  • Саблина Татьяна Юрьевна
  • Рыжова Любовь Николаевна
RU2585291C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТОК ЯДЕРНОГО ТОПЛИВА С РЕГУЛИРУЕМОЙ МИКРОСТРУКТУРОЙ 2010
  • Маловик Виктор Васильевич
  • Владимировъ Воладимир Викторович
  • Главин Константин Викторович
  • Орлов Дмитрий Сергеевич
RU2423742C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОРИСТОСТИ

Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения. Технический результат - получение пористого керамического материала с бимодальным распределением пористости, т.е. поровой структуры, состоящей из крупных и мелких связных пор, с пористостью до 80%. Способ включает приготовление смеси из ультрадисперсного оксидного керамического порошка ZrO2, Al2O3, MgO и порошковых добавок–порообразователей. В качестве добавки-порообразователя крупной пористости используют органическую добавку с размером частиц 20-150 мкм, удаляемую в процессе низкотемпературного отжига, а для формирования мелкой связной пористости в смесь вводят гидроксид того же элемента, что и спекаемая керамика, разлагающийся при низкотемпературном отжиге на оксид и водяной пар, при этом используют порошки оксидной керамики и гидроксида одной дисперсности. Смесь формуют холодным одноосным прессованием, проводят низкотемпературный отжиг и окончательное спекание при температуре 1500-1650°С. 4 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 691 207 C1

1. Способ получения пористой керамики с бимодальным распределением пористости, включающий приготовление смеси из порошков оксидов ZrO2, MgO, Al2O3 и органических порошковых добавок-порообразователей с последующим спеканием, отличающийся тем, что в смесь вводят гидроксид того же элемента, что и спекаемая керамика, разлагающийся при отжиге на оксид и водяной пар, формуют порошки посредством холодного одноосного прессования без добавления связующего, после чего проводят низкотемпературный отжиг прессовок в печи с воздушной атмосферой для удаления продуктов термического разложения порообразующих добавок с промежуточной выдержкой 300°С, окончательное спекание проводят в печи с воздушной средой при конечной температуре от 1500 до 1650°С и выдержкой в течение 1 часа.

2. Способ по п. 1, отличающийся тем, что в качестве упомянутой добавки-порообразователя крупной пористости используют органические добавки со средним размером частиц от 20 до 150 мкм и температурой выгорания ниже температуры плавления спекаемой керамики.

3. Способ по п. 1, отличающийся тем, что в качестве упомянутой добавки-порообразователя мелкой пористости используют гидроксид того же элемента и той же дисперсности, что и основной порошок оксида.

4. Способ по п. 1, отличающийся тем, что низкотемпературный отжиг упомянутых прессовок производят в керамическом тигле в засыпке из мелкодисперсного порошка оксида того же элемента, что и спекаемая керамика.

5. Способ по п. 1, отличающийся тем, что в исходную порошковую смесь вводят до 70 об.% порообразователей крупной и мелкой пористости.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691207C1

US 9776169 B2, 03.10.2017
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2010
  • Мельникова Галина Васильевна
  • Жуков Илья Александрович
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Молчунова Лилия Михайловна
  • Соболев Игорь Александрович
  • Козлова Анна Валерьевна
  • Клевцова Екатерина Владимировна
RU2476406C2
КОМПОЗИЦИОННАЯ ПОРИСТАЯ ПОДЛОЖКА ДЛЯ ОКСИДНО-КЕРАМИЧЕСКИХ МЕМБРАН И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Зырянов Владимир Васильевич
RU2349373C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО БИОМАТЕРИАЛА НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ 2015
  • Буякова Светлана Петровна
  • Григорьев Михаил Владимирович
  • Кульков Сергей Николаевич
  • Саблина Татьяна Юрьевна
  • Рыжова Любовь Николаевна
RU2585291C1
US 5427721 A, 27.06.1995
US 9468906 B2, 18.10.2016.

RU 2 691 207 C1

Авторы

Буяков Алесь Сергеевич

Буякова Светлана Петровна

Кульков Сергей Николаевич

Даты

2019-06-11Публикация

2017-12-26Подача