СПОСОБ ПОДГОТОВКИ ЭЛЕКТРОЛИТА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ Российский патент 2006 года по МПК C25C1/12 C25D3/38 

Описание патента на изобретение RU2280106C2

Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике.

Известен способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ (ПАВ), в числе которых вводят тиокарбамид (тиомочевину). Добавки ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 90 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электрорафинирования при плотности тока 310-320 А/м2 получать медные катоды марки М0к, характеризующиеся мелкокристаллической структурой, бороздчатой поверхностью и относительно высоким содержанием серы [1].

Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке водного раствора тиокарбамида в электролит непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком известного способа являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, используемым в качестве добавки ПАВ.

Известен способ приготовления электролита для электролитического осаждения меди, включающий введение в сульфатный электролит комплекса ПАВ, в числе которых вводят тиокарбамид (тиомочевину). Каждую добавку ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 70 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электролитического рафинирования получать медные катоды марок М00к и М0к, характеризующиеся мелкокристаллической структурой [2].

Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке в электролит водного раствора тиокарбамида непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, применяемым в качестве добавки ПАВ.

Известен способ приготовления сульфатного электролита для электролитического рафинирования меди, включающий введение в электролит комплекса ПАВ, в числе которых вводят тиокарбамид, (тиомочевину). Добавки ПАВ, в том числе тиокарбамид, растворяют в воде при комнатной температуре и вводят в электролит, поступающий в электролизные ванны. При этом расход каждой добавки ПАВ составляет 50-150 г на тонну меди, получаемой при электролизе [3]. Способ позволяет в процессе электролитического рафинирования получать медные катоды, характеризующиеся мелкокристаллической структурой.

Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида (серосодержащего соединения), вводимого в качестве добавки ПАВ. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования, обусловленные значительным расходом тиокарбамида, вводимого в сульфатный электролит в качестве добавки ПАВ.

Наиболее близким к заявляемому способу по совокупности существенных признаков является способ электролитического рафинирования меди из сернокислых электролитов, включающий введение в электролит 2-5 мг/л продукта конденсации тиомочевины и аминоамидов жирных кислот. Добавки ПАВ, в том числе продукт конденсации тиомочевины и аминоамидов жирных кислот, растворяют в воде при 60-70°С и вводят в электролит, поступающий в электролизные ванны. При этом концентрация продукта конденсации тиомочевины и аминоамидов жирных кислот составляет 2-5 г/л [4]. Способ позволяет в процессе электролитического рафинирования получать плотные без дендритов медные катоды.

Недостатком известного способа-прототипа является повышенное (0,001%) содержание серы в катодной меди. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования.

Задача изобретения заключается в повышении качества катодной меди и снижении удельного расхода электроэнергии на ее производство.

Технический результат от использования изобретения заключается в получении катодной меди, имеющей гладкую без дендритов поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости.

Сущность предлагаемого изобретения заключается в том, что в сульфатный электролит для электролитического рафинирования меди вводят комплекс добавок ПАВ, в числе которых вводят тиокарбамид. При этом тиокарбамид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 часов. Другое отличие способа состоит в том, что в качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит.

Экспериментально установлено, что способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди позволяет за счет предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки раствора при температуре 40-70°С в течение 10-70 часов получать катодную медь, характеризующуюся гладкой поверхностью, мелкокристаллической структурой и низким содержанием серы. Кроме того, предлагаемый способ подготовки электролита позволяет снизить расход электроэнергии на производство 1 тонны электролитной меди.

В способах приготовления электролита для электролитического рафинирования меди, включающих введение в электролит комплекса добавок ПАВ, в числе которых вводят тиокарбамид, указанных аналогах и прототипе отсутствует предварительное растворение тиокарбамида в сульфатном растворе меди и выдержка этого раствора при температуре 40-70°С в течение 10-70 часов.

В случае отсутствия предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки этого раствора при температуре 40-70°С в течение 10-70 часов для получения в результате электрорафинирования катодной меди, характеризующейся гладкой поверхностью и мелкокристаллической структурой, необходимо увеличить расход тиокарбамида (описание аналогов) или вводить другое ПАВ (прототип). В свою очередь, увеличение расхода тиокарбамида приводит к повышению содержания серы в катодной меди, снижению ее физико-механических свойств и увеличению удельного расхода электроэнергии на ее производство.

Увеличение в предлагаемом способе количества ионов меди в сульфатном медном растворе более чем необходимо для обеспечения верхнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, создаст трудности исполнения, связанные со значительным увеличением промежуточного оборудования для растворения и выдержки при приготовлении добавки тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора.

Уменьшение в предлагаемом способе количества ионов меди в сульфатном медном растворе менее чем необходимо для обеспечения нижнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, приведет к образованию ограниченно растворимых соединений, затрудняющих исполнение способа и способных негативно повлиять на процесс электролитического рафинирования меди.

Уменьшение ниже 40°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ.

Увеличение выше 70°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, приводит к его разложению, что отрицательно влияет на поверхностно-активные свойства и не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ.

Уменьшение продолжительности предварительной выдержки менее 10 часов не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, вводимого в числе комплекса добавок ПАВ.

Увеличение продолжительности предварительной выдержки раствора тиокарбамида более 70 часов создает трудности исполнения, связанные со значительным увеличением промежуточного оборудования для приготовления раствора тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора.

Сведений об известности отличительного признака предлагаемого технического решения при изучении патентной и технической литературы не выявлено, что свидетельствует о соответствии заявляемого объекта критерию «изобретательский уровень».

Способ осуществляется следующим образом.

Тиокарбамид предварительно растворяют при температуре 40-70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, и выдерживают раствор тиокарбамида при температуре 40-70°С в течение 10-70 часов. Приготовленный раствор вводят в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в электролизные ванны для осуществления процесса электролитического рафинирования меди.

Процесс электролитического рафинирования меди осуществляется следующим образом. В электролизные ванны на токоподводящие анодную и катодную шины завешивают соответствующие электроды. В качестве анодов используют литые пластины из меди огневого рафинирования, в качестве катодов - тонкие листы из электролитной меди (основа) или матрицы из титана (или нержавеющей стали). На электролизную ванну подают постоянный электрический ток из расчета катодной плотности тока 250-360 А/м2.

Электрохимическое растворение медных анодов и катодное осаждение меди из сульфатного электролита осуществляют при его постоянной циркуляции и температуре 60-65°С.

Эффективность способа оценивается по результатам электролиза в части удельного расхода электроэнергии и получения катодной меди, имеющей гладкую поверхность, мелкокристаллическую структуру, низкое содержание серы и высокое значение спирального удлинения, характеризующего прокатываемость меди. Предлагаемый способ описан в конкретных примерам и таблице 1.

Пример 1 (таблица 1, опыт 1) - реализация способа прототипа.

Заданные количества добавок ПАВ, рассчитанные по расходу, г/тCu: клея - 70 (1,6 г/дм3); продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот - 85 (2,0 г/дм3) растворяли в дистиллированной воде при температуре 70°С. Приготовленные растворы каждого ПАВ вводили в сульфатный электролит для электролитического рафинирования меди, поступающий в электролизную ванну. Для опыта использовали сульфатный электролит следующего состава, г/дм3: меди - 50-55; никеля - 19-22; серной кислоты - 155-161; хлор-иона - 0,045-0,050.

Электролитическое рафинирование меди осуществляли на лабораторной установке, состоящей из электролизной ванны емкостью 4 дм3 и напорного бачка емкостью 10 л. Ванну обеспечивали индивидуальной системой циркуляции и оборудовали анодной и катодной шинами, подключенными через лабораторный автотрансформатор (ЛАТР) к выпрямителю ВСА-5. На катодную и анодную шины электролизной ванны на расстоянии 4 см завешивали один катод, два медных анода и пропускали постоянный ток. Катодная плотность тока составляла 310 А/м2. Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм3/ч. Продолжительность эксперимента составляла 94 часа.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой;

- наличием мелких округлых наростов;

- содержанием серы - 10 г/т;

- низким показателем спирального удлинения, равным 368 мм.

Удельный расход электроэнергии составил 336 кВт·ч/тCu.

Пример 2 (таблица 1, опыт 2) - реализация способа-прототипа.

Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 2 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял - 200 (5,0 г/дм3).

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой;

- незначительной бороздчатостью;

- содержанием серы - 12 г/т;

- спиральным удлинением, равным 351 мм.

Удельный расход электроэнергии составил 371 кВт·ч/тCu.

Пример 3 (таблица 1, опыт 3) - реализация способа прототипа

Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 3 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял - 200 (5,0 г/дм3), и концентрацией никеля (25 г/дм3) и серной кислоты (120 г/дм3).

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой;

- незначительной бороздчатостью;

- содержанием серы - 14 г/т;

- низким показателем спирального удлинения, равным 339 мм.

Удельный расход электроэнергии составил 445 кВт·ч/тCu.

Пример 4 (таблица 1, опыт 4) - реализация заявляемого способа

Эксперимент по электролитическому рафинированию меди осуществляли при тех же условиях, что и пример 1. Пример 4 отличался от примера 1 введением в качестве добавок растворов ПАВ, рассчитанных по расходу, г/тCu: клея - 70 и тиокарбамида - 30 г. При этом раствор тиокарбамида предварительно приготавливали.

Тиокарбамид растворяли при температуре 40°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20, и выдерживали раствор тиокарбамида при температуре 40°С в течение 10 часов.

Приготовленный раствор вводили в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в процессе электролитического рафинирования меди в электролизные ванны при осуществлении процесса электролитического рафинирования меди.

Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм3/ч. Продолжительность эксперимента составляла 94 часа.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой и гладкой поверхностью катода;

- содержанием серы - 6 г/т;

- высоким показателем спирального удлинения, равным 419 мм.

Удельный расход электроэнергии составил 284 кВт·ч/тCu.

Пример 5 (таблица 1, опыт 5) - реализация заявляемого способа

Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 5 отличался от примера 4 условиями подготовки раствора тиокарбамида.

Подготовка раствора тиокарбамида содержала следующие операции:

- растворение при температуре 70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 600;

- выдержку приготовленного раствора в течение не более 70 часов при температуре 70°С.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой и гладкой поверхностью катода;

- содержанием серы - 5 г/т;

- высоким показателем спирального удлинения, равным 424 мм.

Удельный расход электроэнергии составил 300 кВт·ч/тCu.

Пример 6 (таблица 1, опыт 6) - реализация заявляемого способа

Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 6 отличался от примера 4 условиями подготовки раствора тиокарбамида.

Подготовка раствора тиомочевины содержала следующие операции:

- растворение при температуре 60°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 300;

- выдержку приготовленного раствора в течение 24 часов при температуре 60°С.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- мелкокристаллической структурой и гладкой поверхностью катода;

- содержанием серы - 4 г/т;

- высоким показателем спирального удлинения, равным 431 мм.

Удельный расход электроэнергии составил 292 кВт·ч/тCu.

Пример 7 (таблица 1, опыт 7) - реализация за пределами диапазона заявляемого способа

Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 7 отличался от примера 4 условиями подготовки раствора тиокарбамида.

Подготовка раствора тиомочевины содержала следующие операции:

- растворение при температуре 30°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 18;

- выдержку приготовленного раствора в течение 8 часов при температуре 30°С.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- наличием мелких дендритных наростов на поверхности катода;

- содержанием серы - 8 г/т серы;

- спиральное удлинение было равно 348 мм.

Удельный расход электроэнергии составил 314 кВт·ч/тCu.

Полученные результаты, а именно снижение качества катодной меди по внешнему виду, увеличение содержания в ней серы, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, показывают, что условия подготовки тиокарбамида не являются оптимальными.

Пример 8 (таблица 1, опыт 8) - реализация способа за пределами заявляемого диапазона.

Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 8 отличался от примера 4 условиями подготовки раствора тиокарбамида.

Подготовка раствора тиомочевины содержала следующие операции:

- растворение при температуре 80°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 650;

выдержку приготовленного раствора в течение 80 часов при температуре 90°С.

Использование, в данном случае, значительной величины массового отношения ионов меди и серы, содержащейся в тиокарбамиде, привело к неоправданному увеличению объемов раствора тиокарбамида при соответственном увеличении промежуточных емкостей и к значительному увеличению продолжительности работы оборудования (термостата), поддерживающего заданную температуру раствора.

В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями:

- наличие мелких дендритных наростов;

- содержание серы составило 9 г/т серы;

- спиральное удлинение было равно 343 мм.

Удельный расход электроэнергии составил 324 кВт·ч/тCu.

Результаты эксперимента, а именно снижение качества катодной меди по внешнему виду, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, подтверждают, что используемые в данном примере условия подготовки тиокарбамида не являются оптимальными.

Согласно полученным экспериментальным данным (опыты 4-6) предлагаемый способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди в присутствии комплекса поверхностно-активных веществ, в числе которых используют тиокарбамид, включающий его предварительную обработку сульфатным раствором меди, действительно является эффективным. Осуществление способа подготовки электролита для электролитического рафинирования меди по примерам 4-6 позволяет повысить качество катодной меди, уменьшить содержание серы в ней, улучшить показатель спирального удлинения, характеризующий пригодность катодной меди для производства катанки методом непрерывного литья и проката, и снизить на 18-57% удельный расход электроэнергии на производство катодной меди относительно прототипа (примеры 1-3). Представленные результаты экспериментов подтверждают, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными.

При выходе значений параметров подготовки электролита за пределы заявленных диапазонов (опыты 7-13) основные технологические показатели ухудшаются, приближаясь к результатам, получаемым по способу-прототипу. Этим подтверждается, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными.

Таким образом, технический результат, достигаемый использованием предлагаемого способа, заключается в следующем:

- в повышении качества катодной меди по внешнему виду, химическому составу и физико-механическим показателям, в частности по величине спирального удлинения, связанного со снижением содержания в ней серы;

- в снижении на 18-57% удельного расхода электроэнергии на производство катодной меди.

Таблица 1Результаты лабораторных испытаний по электролитическому рафинированию медиУсловия опытов: катодная плотность тока - 310 А/м2; температура электролита - 60-65°С; продолжительность каждого опыта - 94 ч; скорость циркуляции - 4 дм3/ч; состав электролита, г/дм3: меди - 50-55; никеля - 19-22; серной кислоты - 155-161; хлор-иона - 0,045-0,050.№ опытаДополнительное* ПАВУсловия подготовки тиокарбамида в сульфатном растворе медиСодержание серы в катодной меди, г/тСпиральное удлинение, ммСреднее напряжение на ванне, ВВыход по току, %Удельный расход электроэнергии, кВт·ч/т Характеристика катодных осадков по внешнему видуНаименованиеРасход, г/ICu (г/дм3)Отношение Cu2+/SCS(NH2)2Продолжительность, чТемпература, °С1234567891011121ТАЖ***85(2)103680,3998,0336Наличие мелких округлых дендритных наростов2200(5)123510,4397,8371Мелкокристаллическая структура, незначительная бороздчатость3**200 (5)---143390,5196,7445Тоже4Тиокарбамид30(0,7)20104064190,3398,1284Мелкокристаллическая структура, гладкая поверхность530 (0,7)600707054240,3598,3300Тоже630 (0,7)300245044310,3498,2292"730 (0,7)1883083480,3696,8314Наличие мелких округлых наростов830 (0,7)650808093430,3796,4324Тоже930 (0,7)188080183050,4095,4354Наличие мелких округлых наростов1030 (0,7)18860163500,3895,8334Наличие мелких округлых наростов1130 (0,7)181030113280,3696,0316Наличие мелких округлых наростов, рыхловатая в верхней части1230 (0,7)650806054220,3597,8302Мелкокристаллическая структура, гладкая поверхность1330 (0,7)6502480113380,3796,9322Мелкокристаллическая структура, наличие редких мелких округлых наростов* - в качестве одного из (дополнительного) ПАВ вводили или тиокарбамид, или продукт конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот (ТАЖ);** - в опыте использовали электролит рекомендуемого в прототипе состава, г/дм3: меди - 50; никеля - 25; серной кислоты - 120.

Используемые источники

1. Отчет по научно-исследовательской работе // Интенсификация и совершенствование процесса электрорафинирования меди на НГМК. Этап 1. Совершенствование и интенсификация процесса электрорафинирования меди на прямом токе / № гос. регистрации 79061613 / Москва - 1979 - с.31.

2. Технологическая инструкция производства электролитной меди ТИ 14.55-46-99. Срок введения 01.09.98 - с.48.

3. Патент ПНР, кл.40 с1 / 16, / С 22 D 1/16, №66979, заявл. 10.04.69, опубл. 31.03.73 г.

4. SU 907088 А (БУГАЕВА А.В. и др.), 23.02.1982.

Похожие патенты RU2280106C2

название год авторы номер документа
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ 2003
  • Рюмин А.А.
  • Скирда О.И.
  • Ладин Н.А.
  • Дылько Г.Н.
  • Логойко А.Н.
RU2233913C1
Электролит для электрорафинирования меди 1976
  • Колеватова Вера Сергеевна
SU596660A1
Способ электролитического рафинирования меди 1980
  • Бугаева Ангелина Васильевна
  • Машнина Октябрина Викторовна
  • Полоскова Антонида Прокопьевна
  • Скирда Ольга Ивановна
  • Жуков Иван Никонорович
SU907088A1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ НИКЕЛЯ 2003
  • Ершов С.Ф.
  • Юрьев А.И.
  • Рябушкин И.А.
  • Галанцева Т.В.
  • Солонин А.В.
  • Волков С.В.
  • Котухов С.Б.
  • Глухов И.Ф.
  • Литвиненко Э.С.
  • Ткачев С.В.
  • Малышева А.Г.
RU2247796C1
Способ электролитического рафинирования никеля 1986
  • Субботина Евгения Александровна
  • Лавренов Владимир Николаевич
  • Юшков Игорь Георгиевич
  • Дельник Александр Нусинович
  • Брюквин Владимир Александрович
  • Резниченко Владлен Алексеевич
SU1397541A1
КАТОДНАЯ МЕДЬ ДЛЯ ПРОИЗВОДСТВА ОТЛИВОК И МЕДНОГО ПРОКАТА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2000
  • Козлов В.А.
  • Чижов Е.А.
RU2180019C2
Способ электролитического рафинирования меди и электролит для его осуществления 1980
  • Наурызбаев Михаил Касымович
  • Гладышев Валерий Павлович
  • Демеев Бауржан Байтугыл
  • Дзекунов Виктор Павлович
  • Ильясов Нигмет Ильясович
  • Ли Игнат Евгеньевич
  • Абдрахманов Тулеген Мусаевич
  • Филимонов Михаил Иванович
SU1154378A1
Способ обезмеживания сернокислых растворов медеэлектролитного производства 2022
  • Тимофеев Константин Леонидович
  • Воинков Роман Сергеевич
  • Ивонин Владимир Петрович
  • Субботина Ирина Леонидовна
  • Яковлева Любовь Михайловна
  • Ряпосова Вера Витальевна
  • Белавкина Марина Валерьевна
  • Сбоев Михаил Геннадьевич
RU2815375C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОЙ РЕГЕНЕРАЦИИ МЕДИ ИЗ СЕРНОКИСЛЫХ ЭЛЕКТРОЛИТОВ 1994
  • Цапах С.Л.
  • Орлова Е.А.
  • Лутова Л.С.
  • Соловьев Е.М.
  • Кардонина А.М.
  • Кузнецов О.С.
  • Хайдов В.В.
RU2075547C1
Электролит для электролитического рафинирования меди 1989
  • Тарасенко Светлана Яковлевна
  • Гусельников Геннадий Митрофанович
  • Гарбуль Владимир Иванович
  • Кузьминых Николай Петрович
SU1703714A1

Реферат патента 2006 года СПОСОБ ПОДГОТОВКИ ЭЛЕКТРОЛИТА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ

Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике. Способ приготовления электролита для электролитического рафинирования меди включает введение в электролит комплекса поверхностно-активных веществ, в числе которых используют тиокарбомид. При этом тиокарбомид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбомиде, равном 20-600 при температуре 40-70°С в течение 10-70 часов. В качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит. Использование изобретения позволяет получить катодную медь, имеющую гладкую поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 280 106 C2

1. Способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ, в числе которых вводят тиокарбамид, с предварительным растворением тиокарбамида, отличающийся тем, что тиокарбамид растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600 при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 ч.2. Способ по п.1, отличающийся тем, что в качестве сульфатного раствора меди при обработке тиокарбамида используют исходный электролит.

Документы, цитированные в отчете о поиске Патент 2006 года RU2280106C2

Способ электролитического рафинирования меди 1980
  • Бугаева Ангелина Васильевна
  • Машнина Октябрина Викторовна
  • Полоскова Антонида Прокопьевна
  • Скирда Ольга Ивановна
  • Жуков Иван Никонорович
SU907088A1
ЕР 1225252 A1, 24.07.2002
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Способ приготовления сернистого красителя защитного цвета 1921
  • Настюков А.М.
  • Настюков К.И.
SU84A1
US 3389064 A, 18.06.1968.

RU 2 280 106 C2

Авторы

Скирда Ольга Ивановна

Ладин Николай Алексеевич

Юрьев Александр Иванович

Шиловских Владимир Анатольевич

Дылько Георгий Николаевич

Елисеев Олег Дмитриевич

Бондарев Михаил Тимофеевич

Даты

2006-07-20Публикация

2004-10-18Подача