СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ НИКЕЛЯ Российский патент 2005 года по МПК C25C1/08 

Описание патента на изобретение RU2247796C1

Изобретение относится к области цветной металлургии, в частности к электролитическому получению никеля.

Известен ряд способов получения никеля электроосаждением из сульфатных или сульфатно-хлоридных никелевых электролитов, содержащих сульфат никеля, сульфат или хлорид натрия, серную кислоту и ряд добавок.

Так, известен способ электролитического получения никеля из сульфатных или сульфатно-хлоридных никелевых электролитов с добавкой в электролит раствора сульфонатов (солей алкан- и алкилароматических кислот), в частности перфторированного поверхностно-активного вещества (ПАВ) в количестве 50-100 г/м3 хромина или 20-40 г/м3 хромоксана. Введение в электролит указанных добавок повышает выход по току на 0,3-2,5% (аналог, а.с. СССР №901362, 1980).

Недостатками данного способа являются:

1. Повышенные затраты на ПАВ по причине их высокой стоимости и расхода.

2. Отсутствие экологического эффекта.

3. Высокая токсичность ПАВ.

Наиболее близким по технической сущности является способ электролитического получения никеля из сульфатных или сульфатно-хлоридных никелевых электролитов с добавкой в электролит поверхностно-активного вещества типа сульфонатов (солей алкан- и алкилароматических кислот), в частности ПАВ “Сульфонол” (смесь натриевых солей алкилбензолсульфокислот на основе керосина СnН2n+16Н4-SO3Na, где n=12-18), который подают в электролит в виде водного раствора концентрацией не более 1 кг/м3 в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 10-20 г/м3 (прототип, доклад “Применение поверхностно-активных веществ при электрорафинировании черновых никелевых анодов” на II Международном симпозиуме по проблемам комплексного использования руд. Тезисы докладов, С.-Петербург, 1996, с.151).

Недостатками данного способа являются:

1. Сложность приготовления и дозирования раствора ПАВ “Сульфонол” по причине его малой растворимости в никелевом электролите.

2. Повышенные затраты на ПАВ по причине высокого расхода.

Задача изобретения заключается в усовершенствовании процесса электролитического получения никеля с целью снижения расхода ПАВ и упрощения процесса приготовления и дозирования раствора ПАВ.

Технический результат от изобретения заключается в значительном уменьшении расхода ПАВ и упрощении технологии приготовления и дозирования раствора ПАВ, при условии наличия эффектов снижения выделения аэрозолей никеля в воздух рабочей зоны (ВРЗ) электролизных ванн и 1,5-2,0% увеличении катодного выхода по току и отсутствии факторов, отрицательно влияющих на процесс электролиза никеля.

Сущность изобретения заключается в том, что в способе электролитического получения никеля, включающем электролиз никеля из никелевых электролитов с добавкой поверхностно-активного вещества (ПАВ) типа сульфонатов (солей алкан- и алкилароматических кислот), согласно изобретению в качестве ПАВ используют “Сульфонол-П” (смесь натриевых солей алкилбензолсульфокислот на основе н-парафинов CnH2n+1-C6H4-SO3Na, где n=10-13), который в виде водного раствора концентрацией 5-10 кг/м3 подают в предварительно очищенный от примесей никелевый электролит (католит), при этом, при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов, “Сульфонол-П” подают в электролит в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, а при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов, “Сульфонол-П” подают в электролит, из расчета поддержания в нем концентрации поверхностно-активного вещества 40-60 г/м3.

Использование в качестве добавки ПАВ “Сульфонола-П” путем введения в предварительно очищенный от примесей никелевый электролит (католит) водного раствора концентрацией 5-10 кг/м3 позволяет производить точную дозировку раствора, не разбавляя при этом в значительной степени никелевый электролит. Подача ПАВ “Сульфонола-П”, при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов, в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, позволяет в среднем в 20 раз снизить уровень выделения гидроаэрозолей никеля в ВРЗ электролизных ванн и увеличить катодный выход по току (КВТ) в среднем на 1,5%.

Изменение точки подачи раствора ПАВ приводит к снижению эффективности ПАВ (по выделению гидроаэрозолей никеля в ВРЗ и КВТ) за счет частичного срабатывания в процессе очистки никелевого электролита от примесей.

Уменьшение концентрации ПАВ в водном растворе ниже 4 кг/м3 приводит к заметному разбавлению исходного никелевого католита и, как следствие, к дополнительным затратам на выведение лишней воды из электролита.

Увеличение концентрации ПАВ свыше 10 кг/м3 приводит к высокому пенообразованию в емкости приготовления раствора ПАВ, что затрудняет процесс приготовления и дозировки раствора ПАВ.

Уменьшение концентрации ПАВ в электролите меньше 4 г/м3 приводит к уменьшению эффекта аэрозолеподавления и КВТ.

Увеличение концентрации ПАВ в электролите свыше 5 г/м3 приводит к излишнему расходу ПАВ и слишком высокому пенообразованию в электролизных ячейках, не оказывая влияния на эффект аэрозолеподавления и КВТ.

Подача ПАВ “Сульфонрл-П”, при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов, в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 40-60 г/м, позволяет в среднем в 20 раз снизить уровень выделения гидроаэрозолей никеля в ВРЗ электролизных ванн и увеличить КВТ по току в среднем на 2,0%.

Уменьшение концентрации ПАВ в электролите меньше 40 г/м3 приводит к уменьшению эффекта аэрозолеподавления и КВТ.

Увеличение концентрации ПАВ в электролите свыше 60 г/м3 приводит к излишнему расходу ПАВ и излишнему пенообразованию в электролизной ванне, не оказывая влияния на эффект аэрозолеподавления и КВТ.

Способ электролитического получения никеля осуществляют следующим образом.

Расчетное количество поверхностно-активного вещества “Сульфонол-П” подают в емкость приготовления раствора ПАВ, в которую предварительно закачивают заданный объем воды. Процесс растворения ведут при комнатной температуре и постоянном механическом перемешивании. Полученный раствор с заданной скоростью подают в напорный бак-смеситель. Туда же с определенной скоростью поступает очищенный никелевый электролит (католит). Полученную смесь используют в качестве исходного электролита при электролизе никеля.

Конкретные примеры осуществления способа.

Пример 1. 1,4 кг поверхностно-активного вещества “Сульфонол-П” (содержание основного вещества 53%) подавали в емкость приготовления раствора ПАВ, в которую предварительно закачивали 1 м3 воды. Процесс растворения вели при комнатной температуре и постоянном механическом перемешивании якорной мешалкой. Полученный раствор с концентрацией ПАВ 7,4 кг/м3 со скоростью 0,33 дм3/ч подавали в напорный бак-смеситель. Туда же со скоростью 200 дм3/ч поступал очищенный никелевый электролит (католит). Полученную смесь с концентрацией ПАВ 4,5 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов.

В ходе эксперимента контролировали:

- Высоту пены в емкости приготовления раствора ПАВ;

- Концентрацию ПАВ в очищенном никелевом электролите (католите);

- Концентрацию никеля в католите до и после добавления раствора ПАВ;

- Высоту пены в электролизной ванне;

- Содержание гидроаэрозолей никеля в ВРЗ электролизной ванны;

- Катодный выход по току.

Расход ПАВ на тонну катодного никеля определяли расчетным путем. Результаты представлены в таблице (опыт №1).

Пример 2 осуществляли аналогично примеру 1 с тем отличаем, что в емкость приготовления раствора ПАВ, в которую предварительно закачивали 1 м3 воды, подавали 1 кг “Сульфонола-П” (содержание основного вещества 53%). Соответственно его концентрация в полученном водном растворе составляла 5 кг/м3.

Результаты представлены в таблице (опыт №2).

Пример 3 осуществляли аналогично примеру 1 с тем отличием, что в емкость приготовления раствора ПАВ, в которую предварительно закачивали 1 м3 воды, подавали 1,9 кг “Сульфонола-П” (содержание основного вещества 53%). Соответственно его концентрация в полученном водном растворе составляла 10 кг/м3.

Результаты представлены в таблице (опыт №3).

Пример 4 осуществляли аналогично примеру 1 с тем отличием, что в емкость приготовления раствора ПАВ, в которую предварительно закачивали 1 м3 воды, подавали 0,75 кг “Сульфонола-П” (содержание основного вещества 53%). Соответственно его концентрация в полученном водном растворе составляла 4 кг/м3.

Результаты представлены в таблице (опыт №4).

Пример 5 осуществляли аналогично примеру 1 с тем отличием, что в емкость приготовления раствора ПАВ, в которую предварительно закачивали 1 м3 воды, подавали 2,1 кг “Сульфонола-П” (содержание основного вещества 53%). Соответственно его концентрация в полученном водном растворе составляла 11 кг/м3.

Результаты представлены в таблице (опыт №4).

Пример 6 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ подавали в анолит, который направляли на медеочистку, а затем на железо-кобальтовую очистку. Полученный очищенный электролит использовали в качестве исходного электролита (католита) при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №6).

Пример 7 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ подавали в обезмеженный анолит, который направляли на железо-кобальтовую очистку. Полученный очищенный электролит использовали в качестве исходного электролита (католита) при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №7).

Пример 8 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,29 дм3/ч. Полученную смесь с концентрацией ПАВ 4,0 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №8).

Пример 9 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,37 дм3/ч. Полученную смесь с концентрацией ПАВ 5,0 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №9).

Пример 10 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,40 дм3/ч. Полученную смесь с концентрацией ПАВ 5,5 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №10).

Пример 11 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,26 дм3/ч. Полученную смесь с концентрацией ПАВ 3,5 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов.

Результаты представлены в таблице (опыт №11).

Пример 12 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 1,11 дм3/ч, а католит 60 дм3/ч. Полученную смесь с концентрацией ПАВ 50 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов.

Результаты представлены в таблице (опыт №12).

Пример 13 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,89 дм3/ч, а католит 60 дм3/ч. Полученную смесь с концентрацией ПАВ 40 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов.

Результаты представлены в таблице (опыт №13).

Пример 14 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 1,33 дм3/ч, а католит 60 дм3/ч. Полученную смесь с концентрацией ПАВ 60 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов.

Результаты представлены в таблице (опыт №14).

Пример 15 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 0,67 дм3/ч, а католит 60 дм3/ч. Полученную смесь с концентрацией ПАВ 60 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов.

Результаты представлены в таблице (опыт №15).

Пример 16 осуществляли аналогично примеру 1 с тем отличием, что водный раствор ПАВ с концентрацией 7,4 кг/м3 подавали в напорный бак-смеситель со скоростью 1,55 дм3/ч, а католит 60 дм3/ч. Полученную смесь с концентрацией ПАВ 40 г/м3 использовали в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов.

Результаты представлены в таблице (опыт №16).

Пример 17 осуществляли в соответствии с прототипом.

Результаты представлены в таблице (опыт №17).

Пример 18 осуществляли аналогично примеру 1 с тем отличием, что в качестве исходного электролита при электролизе никеля с использованием растворимых никелевых анодов использовали очищенный католит без добавки ПАВ.

Результаты представлены в таблице (опыт №18).

Пример 19 осуществляли аналогично примеру 1 с тем отличием, что в качестве исходного электролита при электролизе никеля с использованием нерастворимых (свинцовых) анодов использовали очищенный католит без добавки ПАВ.

Результаты представлены в таблице (опыт №19).

Из рассмотренных примеров (таблица) следует, что наилучшие показатели процесса электролиза никеля с использованием растворимых никелевых анодов имеют примеры №№1, 2, 3, 8, 9, 12, 13, 14, где способ электролитического получения никеля, включающий электролиз никеля из никелевых электролитов с добавкой поверхностно-активного вещества (ПАВ) типа сульфонатов (солей алкан- и алкилароматических кислот), согласно изобретению в качестве ПАВ использовали “Сульфонол-П” (смесь натриевых солей алкилбензолсульфокислот на основе н-парафинов СnН2n+16Н4-SO3Nа, где n=10-13), который в виде водного раствора концентрацией 5-10 кг/м3 подавали в предварительно очищенный от примесей никелевый электролит (католит), при этом, при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов, “Сульфонол-П” подают в электролит в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, а при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов “Сульфонол-П” подают в электролит из расчета поддержания в нем концентрации поверхностно-активного вещества 40-60 г/м3.

Подача ПАВ “Сульфонола-П”, при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов, в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, позволяет в среднем в 20 раз снизить уровень выделения гидроаэрозолей никеля в ВРЗ электролизных ванн и увеличить катодный выход по току (КBT) в среднем на 1,5%.

Подача ПАВ “Сульфонола-П”, при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов, в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 40-60 г/м3, позволяет в среднем в 20 раз снизить уровень выделения гидроаэрозолей никеля в ВРЗ электролизных ванн и увеличить КВТ по току в среднем на 2,0%.

Таким образом, технический результат, достигаемый изобретением, заключается в усовершенствовании процесса электролитического получения никеля с целью снижения расхода ПАВ и упрощения процесса приготовления и дозирования раствора ПАВ.

При этом достигается эффект 20-кратного снижения выделения гидроаэрозолей никеля в ВРЗ электролизной ванны и 2%-ного увеличения катодного выхода по току.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. А.с. СССР №901362, 1980.

2. Доклад “Применение поверхностно-активных веществ при электрорафинировании черновых никелевых анодов” на II Международном симпозиуме по проблемам комплексного использования руд. Тезисы докладов, С.-Петербург, 1996, с.151.

Похожие патенты RU2247796C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЯ 1994
  • Кубасов В.Л.
  • Тарасов А.В.
  • Ланцева И.И.
RU2066713C1
АНОДНАЯ ЯЧЕЙКА ДЛЯ ЭЛЕКТРОВЫДЕЛЕНИЯ ЦВЕТНЫХ МЕТАЛЛОВ 2006
  • Юрьев Александр Иванович
  • Сущев Александр Васильевич
  • Котухов Сергей Борисович
  • Солонин Александр Владимирович
  • Грейвер Михаил Борисович
  • Литвиненко Эмма Сергеевна
  • Османова Сусанна Ресульевна
  • Шульга Елена Валентиновна
RU2353712C2
СПОСОБ ПОДГОТОВКИ ЭЛЕКТРОЛИТА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ 2004
  • Скирда Ольга Ивановна
  • Ладин Николай Алексеевич
  • Юрьев Александр Иванович
  • Шиловских Владимир Анатольевич
  • Дылько Георгий Николаевич
  • Елисеев Олег Дмитриевич
  • Бондарев Михаил Тимофеевич
RU2280106C2
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО НИКЕЛЯ 1999
  • Хагажеев Д.Т.
  • Мироевский Г.П.
  • Попов И.О.
  • Онищин Б.П.
  • Розенберг Ж.И.
  • Рябко А.Г.
RU2141010C1
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЯ 1991
  • Кубасов В.Л.
  • Воробьев Г.А.
  • Попова Т.Е.
  • Галанцева Т.В.
  • Ершов С.Ф.
SU1779065A1
Способ электроэкстракции меди из сульфатных электролитов 2018
  • Крестьянинов Александр Тимофеевич
  • Огорелышев Сергей Владимирович
  • Яковлева Любовь Михайловна
  • Волков Виктор Владимирович
  • Верхоланцева Наталья Юрьевна
  • Козмина Анна Анатольевна
RU2690329C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДИАФРАГМЕННОГО ЭЛЕМЕНТА ЯЧЕЙКИ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ И ДИАФРАГМЕННЫЙ ЭЛЕМЕНТ 2003
  • Ершов С.Ф.
  • Рябушкин И.А.
  • Юрьев А.И.
  • Солонин А.В.
  • Волков С.В.
  • Погребенко Д.М.
  • Котухов С.Б.
  • Глухов И.Ф.
  • Кожухов В.В.
  • Литвиненко Э.С.
  • Османова С.Р.
  • Серво Матти
RU2256729C1
СПОСОБ ЭЛЕКТРОИЗВЛЕЧЕНИЯ КОМПАКТНОГО НИКЕЛЯ 2007
  • Ашихин Виктор Владимирович
  • Лебедь Андрей Борисович
  • Юнь Антонин Александрович
  • Ивонин Владимир Петрович
  • Сбоев Михаил Геннадьевич
  • Петренко Нина Ивановна
RU2361967C1
Способ получения никеля 1991
  • Кубасов Владимир Леонидович
  • Красноносов Владимир Павлович
  • Тертичная Людмила Анатольевна
  • Попова Татьяна Евгеньевна
  • Воробьев Глеб Алексеевич
  • Розенберг Жаквес Иосифович
  • Лавренев Владимир Николаевич
  • Ершов Сергей Федорович
  • Галанцева Татьяна Викторовна
  • Бацунов Константин Алексеевич
SU1788089A1
Способ электролитического обезмеживания растворов 1990
  • Анисимова Нина Николаевна
  • Ржевский Игорь Викторович
  • Рыжов Александр Георгиевич
  • Гордиенко Сергей Георгиевич
  • Машков Анатолий Николаевич
  • Тер-Оганесянц Александр Карлович
SU1749318A1

Реферат патента 2005 года СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ НИКЕЛЯ

Изобретение относится к области цветной металлургии, в частности к электролитическому получению никеля. В способе электролитического получения никеля, включающем электролиз никеля из никелевых электролитов с добавкой поверхностно-активного вещества (ПАВ) типа сульфонатов (солей алкан- и алкилароматических кислот), согласно изобретению в качестве ПАВ используют “Сульфонол-П” (смесь натриевых солей алкилбензолсульфокислот на основе н-парафинов СnН2n+1-C6H4-SO3Na, где n=10-13), который в виде водного раствора концентрацией 5-10 кг/м3 подают в предварительно очищенный от примесей никелевый электролит (католит), при этом, при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов, “Сульфонол-П” подают в электролит в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, а при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов, “Сульфонол-П” подают в электролит из расчета поддержания в нем концентрации поверхностно-активного вещества 40-60 г/м3, обеспечивается уменьшение расхода ПАВ, упрощение технологии приготовления и дозирования раствора ПАВ, снижение выделения аэрозолей никеля в воздух рабочей зоны электролизных ванн и повышение катодного выхода по току, 1 табл.

Формула изобретения RU 2 247 796 C1

Способ электролитического получения никеля, включающий электролиз никеля из никелевых электролитов с добавкой поверхностно-активного вещества (ПАВ) типа сульфонатов – солей алкан- и алкилароматических кислот, отличающийся тем, что в качестве ПАВ используют “Сульфонол-П” – смесь натриевых солей алкилбензолсульфокислот на основе н-парафинов СnН2n+1-C6H4-SO3Na, где n=10-13, который в виде водного раствора концентрацией 5-10 кг/м3 подают в предварительно очищенный от примесей никелевый электролит-католит, при этом при проведении электролиза никеля с использованием сульфат-хлоридного электролита и растворимых никелевых анодов “Сульфонол-П” подают в электролит в количестве, обеспечивающем поддержание в нем концентрации поверхностно-активного вещества 4-5 г/м3, а при проведении электролиза никеля с использованием сульфатного электролита и нерастворимых никелевых анодов “Сульфонол-П” подают в электролит из расчета поддержания в нем концентрации поверхностно-активного вещества 40-60 г/м3.

Документы, цитированные в отчете о поиске Патент 2005 года RU2247796C1

Доклад “Применение поверхностно-активных веществ при электрорафинировании черновых никелевых анодов на II Международном симпозиуме по проблемам комплексного использования руд, Тезисы докладов, - С.-Петербург, 1996, с.151
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЯ 1994
  • Кубасов В.Л.
  • Тарасов А.В.
  • Ланцева И.И.
RU2066713C1
Способ электролитического рафинирования никеля 1989
  • Андрущенко Виктор Николаевич
  • Дегтярева Людмила Вениаминовна
  • Волкова Ольга Борисовна
  • Цмакалова Нина Николаевна
  • Шмонин Олег Иванович
  • Иванов Виктор Николаевич
SU1656011A1
US 4087339 A, 02.05.1978
КОЛЕСО 2008
  • Щепочкина Юлия Алексеевна
RU2356746C1

RU 2 247 796 C1

Авторы

Ершов С.Ф.

Юрьев А.И.

Рябушкин И.А.

Галанцева Т.В.

Солонин А.В.

Волков С.В.

Котухов С.Б.

Глухов И.Ф.

Литвиненко Э.С.

Ткачев С.В.

Малышева А.Г.

Даты

2005-03-10Публикация

2003-11-11Подача