Настоящее изобретение относится к промышленному получению сульфида 5 водорода (H2S), синтетическому газу, полученному по реакции водорода с жидкой серой.
Указанную реакцию, которую осуществляют в установке или промышленном устройстве, часто описывают в литературе, в частности, в патентах США 5173285, Великобритании 1193040, США 4404180, США 4629617, Японии 05067562, WO 8200632, патентах Великобритании 1600227, США 4094961.
Указанное промышленное получение обычно заключается во взаимодействии газообразного водорода с серой в жидком состоянии при температуре порядка от 400 до 450°С в реакторе, оснащенном колонной для ректификации серы. Газ, выходящий из верхней части колонны, затем охлаждают в одном или нескольких холодильниках, где серу рекуперируют за счет ее затвердения.
Авторами настоящего изобретения обнаружено, что в установке данного типа газ с температурой 30°С на выходе из холодильника может еще содержать примеси, приводящие без применения постреакционной обработки к осаждению в оставшейся части установки, по крайней мере, 100 мг серы на килограмм H2S продукта.
Указанное осаждение твердой серы может повлечь за собой закупоривание трубопроводов в нижней части холодильника, что приводит к остановке получения H2S и необходимости прочистки закупоренных трубопроводов.
Указанное осаждение соответствует псевдоупругости насыщенного пара, по крайней мере, в 10 раз больше, чем упругость насыщенного пара чистой серы при той же указанной температуре 30°С. Указанная псевдоупругость пара объясняется присутствием сульфанов H2Sx, при этом x является целым числом, равным или большим 2.
Сульфаны приведены в "Nouveau Traité de Chimie minérale, Paul Pascal, Том XIII, 1960, страницы 1108-1124".
Недавно L.Winder et V.Meyn опубликовали в Ind. Eng. Chem. Res. 1996, 35, 1257-1262 экспериментальное исследование кинетики образования и разложения сульфанов в системе Сера/H2S.
Патенты США 5173285 и GB 1193040 относятся к проблеме непрореагировавших сульфанов или "парообразной сере" и оба раскрывают одно и то же техническое решение, а именно постреакционную обработку газа, полученного по реакции Н2 и жидкой серы воздействием газообразного водорода, взятого в небольшом избытке, при температуре порядка от 200°С до 350°С возможно в присутствии катализатора кобальт-молибден, никель-молибден или сульфид никеля.
В процессе проведения указанной постреакционной обработки оставшаяся сера и/или сульфаны преобразуются в сульфид водорода в соответствии со схемой:
S и/или H2Sx+H2→H2S
Действительно, сульфаны и, тем более, сера, являются типами химических соединений с меньшей степенью гидрирования, чем сульфид водорода.
Объектом настоящего изобретения является поиск другого технического решения, простого в применении, с целью предотвращения закупоривания трубопроводов.
Указанная цель достигается способом очищения синтетического газа, содержащего главным образом сероводород H2S, полученный по реакции водорода с жидкой серой в промышленном устройстве, отличающемся тем, что указанный газ пропускают через фильтр, содержащий твердое вещество, которое выбирают из пористых гранул активированного угля, оксида алюминия, диоксида кремния.
В указанных условиях очищенный газ на выходе из фильтра в меньшей степени осаждает твердую серу в указанном устройстве или даже вообще не способен осаждать твердую серу.
Преимущество пористых гранул состоит в том, что их поры внутри насыщаются серой и/или соединениями, содержащими серу, и тем самым препятствуют засорению серой пустых пространств между зернами. Таким образом, очистка промышленного газа не приводит к потере значительной загрузки перед насыщением пористых гранул.
Предпочтительно, пористыми гранулами является активированный уголь.
Действительно, подобный уголь способен задерживать в порах путем адсорбции до 70% от своей первоначальной массы соединений, содержащих серу, в пересчете на массу серы (молекулярная масса равна 32 г). Подобная адсорбирующая способность предоставляет больше преимуществ с точки зрения промышленности, т.к. она позволяет ограничить или даже избежать фазу регенерации. Кроме того, активированный уголь имеется в достаточном количестве и снижает стоимость процесса.
Кроме того, использованный уголь после применения, содержащий серные продукты, можно полностью сжечь и, таким образом, превратить в СО2, SO2 и Н2О.
Можно применять любой активированный уголь, в частности полученный из древесины, каменного угля, торфа, скорлупы кокосового ореха.
Предпочтительно, фильтр также содержит материал, избирательно адсорбирующий воду по сравнению с сероводородом, в частности, молекулярное сито типа 3Å. Указанный материал, высушивая сероводород, позволяет затем избежать проблем коррозии в оставшейся части установки.
Обычно рабочая температура твердого пористого вещества составляет от 0° до 200°С, предпочтительно, от 0° до 100°С.
Обычно давление внутри фильтра составляет от 1 до 100 абсолютных бар и, предпочтительно, от 1 до 10 абсолютных бар.
Предпочтительно время контактирования синтетического газа с твердым пористым веществом составляет от 0,1 сек до 5 мин, предпочтительно, от 1 до 30 сек.
Линейная скорость синтетического газа в фильтре составляет от 0,01 м/сек до 2 м/сек, предпочтительно, от 0,02 м/сек до 0,1 м/сек.
Помимо приведенного выше описания экспериментальная часть позволит лучше понять настоящее изобретение. Примеры приведены в качестве пояснения.
Экспериментальная часть
На фильтр, содержащий активированный уголь, направляют поток газа, либо поток продуктов синтеза, либо H2S, имеющий массовую чистоту 99,7%, в течение определенного времени. Далее фильтр отсоединяют от газообразного потока, затем осторожно продувают азотом при температуре от 20 до 100°С для отгонки H2S. Несмотря на указанную продувку, могут появиться последующие выбросы соединений, содержащих серу.
В направлении от входа к выходу внутри фильтра время от времени осуществляют взятия проб активированного угля.
Определение серы в образцах угля, взятых на анализ указанным образом, осуществляют, определяя с помощью микроанализа общее содержание серы.
Образец подвергают полному сжиганию в присутствии кислорода; соединения, содержащие серу, преобразуют в SO2, затем в H2SO4 окислением пероксидом водорода, и, наконец, проводят количественное определение методом кулонометрии в соответствии с E.Debal et R.Levy, Bull.Soc.Chim.Fr №68(1), pp.426-434, 1967.
Результаты приведены в г серы на 100 г первоначального активированного угля (перед адсорбцией серных продуктов).
Пример 1
Берут синтетический газ (под давлением 4 бар), содержащий в основном H2S, полученный синтезом из серы + водород. Указанный газ проходит через холодильник, который доводит его температуру до 30°С. Выход продукта составляет 0,5 тонн/час или 75 м3/час.
Указанный газ пропускают через вращающийся цилиндрический фильтр с внутренним диаметром 23 см и длиной внутри фильтра, равной 50 см. Указанный фильтр наполняют 8 кг активированного угля ACTICARBONE® АС 35 французской компании СЕСА.
Указанный уголь имеет форму маленьких цилиндров диаметром 4 мм. Его удельная поверхность по методу ВЕТ составляет, по крайней мере, 1000 м2/г.
По прошествии 8 час фильтрации фильтр отсоединяют и подвергают приведенной далее процедуре для анализа градиента содержания серных продуктов. Отбор образцов угля осуществляют в различных слоях месторождений с промежутками в 10 см в зависимости от длины фильтра. Результаты представлены в следующей таблице.
Пример 2
Повторяют условия примера 1 со свежей порцией активированного угля, но увеличив в три раза продолжительность фильтрации (24 час). Результаты представлены в следующей таблице 2.
Пример 3
Условия идентичны условиям примера 1, за исключением продолжительности фильтрации, которая составляет 56 час. Результаты приведены в следующей таблице 3.
Изучение примеров с 1 по 3 показывает, что уголь избирательно задерживает серу и сульфаны, содержащиеся в синтетическом газе, и что он обладает более слабым сродством к Н2S.
В способе по настоящему изобретению можно применять батарею с двумя или несколькими фильтрами с целью изменения направления потока газа для очистки на новый фильтр, как только используемый фильтр накопит определенное количество прошедшего газа. Указанное количество, которое в равной степени зависит от применяемого активированного угля и от его используемой массы, определяют на основе примеров, аналогичных приведенным ранее примерам с 1 по 3.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ ДЕГАЗАЦИИ ЖИДКОЙ СЕРЫ | 2012 |
|
RU2629077C2 |
УСТРОЙСТВО И СПОСОБЫ ДЛЯ УДАЛЕНИЯ ЭЛЕМЕНТАРНОЙ СЕРЫ ИЗ УГЛЕВОДОРОДНОЙ ТЕКУЧЕЙ СРЕДЫ | 2011 |
|
RU2571413C2 |
СПОСОБ ПРЕВРАЩЕНИЯ ПОЛИСУЛЬФАНОВ | 2003 |
|
RU2323874C2 |
УСТРОЙСТВА И СПОСОБЫ ДЛЯ УДАЛЕНИЯ ЭЛЕМЕНТАРНОЙ СЕРЫ ИЗ УГЛЕВОДОРОДНОЙ ТЕКУЧЕЙ СРЕДЫ | 2015 |
|
RU2669360C2 |
СПОСОБ ДЕГАЗАЦИИ ЖИДКОЙ СЕРЫ | 2017 |
|
RU2660867C1 |
СПОСОБ И КАТАЛИЗАТОР ДЛЯ ПРЯМОГО ОКИСЛЕНИЯ СЕРОВОДОРОДА ДО СЕРЫ | 1994 |
|
RU2107024C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ МЕТИЛМЕРКАПТАНА | 2008 |
|
RU2497588C2 |
СПОСОБ ОЧИСТКИ ГАЗОВ, ПОЛУЧЕННЫХ ИЗ УСТАНОВКИ ГАЗИФИКАЦИИ | 2006 |
|
RU2417825C2 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ ДИОКСИДА СЕРЫ | 2008 |
|
RU2369436C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА И ЭЛЕМЕНТАРНОЙ СЕРЫ ИЗ СЕРОВОДОРОДА | 2002 |
|
RU2216506C1 |
Изобретение относится к очистке сероводорода, полученного реакцией водорода с жидкой серой. Сероводород пропускают через фильтр, содержащий твердое вещество, которое выбирают из пористых гранул активированного угля, оксида алюминия, оксида кремния, обладающих свойствами молекулярного сита. Данное изобретение позволяет предотвратить закупоривание трубопроводов за счет очистки сероводорода от сульфанов и/или непрореагировавшей серы. 3 з.п. ф-лы, 3 табл.
US 5173285 А, 22.12.1992 | |||
Способ получения восстановительного газа | 1976 |
|
SU618341A1 |
Самофлюсующийся состав для нанесения покрытий | 1988 |
|
SU1601193A1 |
WO 8200632 A1, 04.03.1982 | |||
СПОСОБ ТЕЛЕГРАФНОЙ РАДИОСВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2474066C1 |
Авторы
Даты
2007-03-10—Публикация
2003-09-03—Подача