Изобретение относится к технологии углубленной переработки углеводородного, в том числе и нефтяного сырья для получения дистиллятных фракций, пригодных для использования в качестве моторных топлив.
Известен способ каталитического крекинга углеводородов с температурой кипения 360-520°С (560°С) в присутствии стационарного катализатора и катализатора в кипящем слое. При этом достигается выход 50-62% бензиновых фракций, 15-20% легкого газойля с температурой кипения до 360°С, как компонента дизельного топлива, а также тяжелого газойля с температурой кипения выше 360°С, который используется как сырье для производства технического углерода (Oil and Gas Journal, Aug. 12, 1996, p.71-80).
Однако этому способу свойственны недостатки. В частности, процесс в кипящем слое мелкозернистого катализатора осуществляется при относительно высокой температуре - 525-535°С и при большом отношении катализатор-сырье, равном 1:6-1:8. При этом образуется кокс в количестве 4-5%, который выжигают с поверхности катализатора в регенераторе. Реактор и регенератор на промышленных установках имеют большие размеры. При производительности 125 т/час диаметр аппаратов достигает 4,5-5,0 м, а высота - 13-30 м. Используемые в промышленности установки крекинга со стационарным слоем катализатора имеют производительность 5-10 т/час и малоэффективны.
Этот способ не приемлем для мини заводов производительностью 2-3 т/час, которая не может быть обеспечена существующей технологией. Поэтому на мини заводах глубина переработки нефти в светлые нефтепродукты не превышает 50-60% и ограничена отбором прямогонных дистиллятов с температурой кипения до 360°С, а остаток используется в качестве котельного топлива.
Наиболее близким к настоящему изобретению является способ крекинга углеводородов, включающий введение раствора катализатора и крекинг под давлением в присутствии водорода (патент РФ №2095394, МКИ C10G 47/02,1997 год).
Недостатком известного способа является необходимость использования дорогостоящих катализаторов, применение которых в известном способе не эффективно, так как происходит коксование.
Исходя из вышеуказанного, в настоящем изобретении достигается следующий технический результат - повышение выхода светлых углеводородов, исключение образования кокса и снижение потребления молекулярного водорода от внешнего источника.
Технический результат достигается за счет того, что в способе крекинга углеводородов, включающем введение раствора катализатора и крекинг под давлением в присутствии водорода, катализатор выбран в виде водорастворимого соединения кремния, а крекинг ведут при температуре и давлении, обеспечивающих взрывообразный переход раствора катализатора в паровую фазу, а также за счет того, что
- раствор катализатора вводят в количестве 0,5-5,0 мас.% от массы углеводорода;
- раствор катализатора диспергируют или эмульгируют в углеводороде до образования суспензии или эмульсии с размерами частиц не более 50 мкм;
- в качестве водорастворимых соединений кремния используют водорастворимые соли кремния в количестве 0,2-1,0 мас.% от массы углеводорода;
- в качестве водорастворимых соединений кремния используют соединения кремния, содержащие добавки цеолита и/или соединений бария или кобальта или редкоземельных элементов;
- взрывообразный переход раствора катализатора в паровую фазу в частицах эмульсии или дисперсии выполняют путем нагрева суспензии или эмульсии от 90-95°С до 380-450°С со скоростью 0,01-0,1°С/сек.
Катализатор вводится в углеводородное сырье единовременно и рециркулирует в системе в смеси с рециркулятом - фракциями сырья с температурой кипения выше 360°С в количестве 30-50% от исходного сырья. Могут использоваться соли, алюмосиликаты или другие водорастворимые соединения кремния, в том числе в виде суспензии или геля.
По мере нагрева суспензии или эмульсии сырья с раствором катализатора происходит образование кристаллитов катализатора нано-размеров 10-100 нм за счет взрывообразного перехода раствора катализатора в паровую фазу и их равномерное распределение в объеме сырья и далее при 420-450°С собственно крекинг сырья.
Для перемешивания сырья в нагревательных трубах в систему вводится небольшое количество (100-150 м3/т) рециркулирующего газа. Для обеспечения протекания процесса, в основном в жидкой фазе, применяется давление не более 3,0 МПа. Поскольку процесс осуществляется при относительно низкой температуре - до 450°С, образование кокса не наблюдается и регенерации катализатора не требуется.
Настоящее изобретение поясняется примерами 1-6 и таблицами 1 и 2.
Пример 1. Крекинг вакуумного газойля с температурой кипения 360-520°С осуществляли в пустотелом проточном реакторе под давлением 0,3 МПа газа-носителя (азот) в количестве 120 л/л сырья, температуре 450°С, объемной скорости подачи сырья 2,0 час-1. Применяли 10%-ный водный раствор катализатора К2SiO3 (табл.1), который добавляли в сырье в количестве 2,9 мас.% и смешивали с сырьем в дисковом диспергаторе для получения эмульсии следующего дисперсного состава (мас.%): менее 0,5 мкм - 2,9; 0,5-1,0 мкм - 11,1; 1,0-2,0 мкм - 8,4; 2,0-4,0 мкм - 15,1; 4,0-5,0 мкм - 18,2; 5,0-10,0 мкм - 24,1; 10,0-20,0 мкм - 10,4; 20,0-30,0 мкм - 5,1; выше 30 мкм - 4,7. При нагреве эмульсии от 90°С до 380°С со скоростью 0,01°С/сек происходил взрывообразный переход раствора катализатора в паровую фазу в частицах эмульсии с образованием кристаллитов катализатора. Выход жидких продуктов составлял 98,5%, газа - 2,6%, в том числе углеводородов C1-C4 - 2,36%. Степень превращения исходного газойля во фракции с температурой кипения до 360°С составляла 66,3%. Кокс не образовывался.
Примеры 2-5. Крекинг вакуумного газойля с температурой кипения 360-520°С осуществляли в условиях, аналогичных примеру 1. Применяли водную суспензию следующих катализаторов с добавками: силикат церия, кобальт-алюмосиликат, барий-алюмосиликат, суспензии цеолита HY в растворе алюмосиликата натрия (табл.1). Катализатор вводили в количестве 1% на сырье смешением в дисковом диспергаторе. Нагрев эмульсии от 90°С до 390°С со скоростью 0,05°С/сек обеспечивал взрывообразный переход раствора (суспензии) катализатора в паровую фазу и образование кристаллитов катализатора. Выход жидких продуктов составлял 95,6-97,7%, газа - 3,4-5,0%, в том числе углеводородов С1-С4 - 3,1-4,8%. Степень превращения исходного газойля во фракции с температурой кипения до 360°С составляла 63,5-69,0%. Кокс не образовывался.
Пример 6. Крекинг сырья осуществляли в виде смеси (60:40) исходного газойля и фракций с температурой кипения выше 360°С, полученных от предыдущих циклов, в которых содержалось 1,0-1,2 мас.% катализатора от предыдущих циклов в виде мелкодисперсных частиц нано-размеров (табл.1). Первоначально катализатор на основе К2SiO3 вводился аналогично примеру 1 со скоростью нагрева эмульсии от 95°С до 400°С - 0,1°С/сек. Процесс осуществляли под давлением 0,6 МПа газа-носителя (азот) в количестве 100 л/л сырья, температуре 450°С, объемной скорости подачи сырья 2,0 час-1. Выход жидких продуктов составлял 95,1%, газа - 4,9%, в том числе углеводородов С1-С4 - 4,2%. Степень превращения сырья во фракции с температурой кипения до 360°С составляла 54,8%. В составе катализата присутствовало 24,2% бензиновых фракций с температурой кипения до 180°С (октановое число по моторному методу 80 пунктов), 37,4% дизельных фракций с температурой кипения 180-360°С и 38,4% остатка (рециркулята) с температурой кипения выше 360°С. Кокс не образовывался.
Процесс протекает с низким газообразованием (выход газа не превышает 5%) и высоким выходом компонентов моторных топлив (выше 90%), в том числе бензина свыше 30%.
Бензины содержат умеренное количество ароматических углеводородов - до 16%, что обеспечит выполнение современных требований к их химическому составу.
Повышенное количество ароматических углеводородов в дизельной фракции с температурой кипения 180-360°С потребует их частичного удаления путем гидрирования.
Важным обстоятельством, положительно характеризующим процесс, является практическое отсутствие в газах водорода (менее 0,01%), который при каталитическом крекинге перераспределяется в основном между бензиновой и дизельной фракциями и не теряется с топливным газом. Потеря водорода на образование газа не превышает 1,0% потенциального содержания его в сырье.
При каталитическом крекинге смеси (70:30) исходного сырья - вакуумного газойля и остатка с температурой кипения выше 360°С от предыдущего цикла (табл.2) достигнуто превращение сырья, достаточное для осуществления технического процесса с рециркуляцией остатка. При этом свежий катализатор в смесь не добавлялся, а использовался остаток от предыдущего цикла в составе рециркулята.
При изучении роли температуры в процессе каталитического крекинга (табл.2) показано, что удовлетворительные результаты достигаются при температуре 450°С. Степень превращения сырья во фракции моторного топлива за один проход превышает 60%, а при полном его превращении с рециркуляцией остатка - свыше 90%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ | 2006 |
|
RU2312127C1 |
СПОСОБ ПЕРЕРАБОТКИ НЕФТИ | 2004 |
|
RU2255959C1 |
СПОСОБ ПЕРЕРАБОТКИ КАМЕННОУГОЛЬНОЙ СМОЛЫ | 2004 |
|
RU2255956C1 |
СПОСОБ ПОЛУЧЕНИЯ СУСПЕНЗИИ КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ | 2017 |
|
RU2652122C1 |
СПОСОБ ПОЛУЧЕНИЯ СУСПЕНЗИИ МОЛИБДЕНСОДЕРЖАЩЕГО КОМПОЗИТНОГО КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ | 2018 |
|
RU2675249C1 |
СПОСОБ КОНВЕРСИИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2137806C1 |
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО СЛАНЦЕВОЕ МАСЛО, ПУТЕМ ГИДРОКОНВЕРСИИ В КИПЯЩЕМ СЛОЕ, ФРАКЦИОНИРОВАНИЯ С ПОМОЩЬЮ АТМОСФЕРНОЙ ДИСТИЛЛЯЦИИ И ЭКСТРАКЦИИ ЖИДКОСТЬ/ЖИДКОСТЬ В ТЯЖЕЛОЙ ФРАКЦИИ | 2011 |
|
RU2592690C2 |
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ В БОЛЕЕ ЛЕГКИЕ СОЕДИНЕНИЯ | 2008 |
|
RU2385344C1 |
СПОСОБ КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ ДЛЯ ПРОИЗВОДСТВА ДОПОЛНИТЕЛЬНОГО КОЛИЧЕСТВА ДИЗЕЛЬНОГО ТОПЛИВА И ПРОПИЛЕНА | 2010 |
|
RU2562238C2 |
СПОСОБ ТЕРМИЧЕСКОГО КРЕКИНГА ТЯЖЕЛЫХ НЕФТЕПРОДУКТОВ ИТЭР | 2007 |
|
RU2354681C1 |
Использование: нефтепереработка и нефтехимия. Сущность: в углеводороды вводят раствор катализатора и проводят крекинг под давлением в присутствии водорода. Катализатор выбирают в виде водорастворимого соединения кремния, а крекинг ведут при температуре и давлении, обеспечивающих взрывообразный переход раствора катализатора в паровую фазу. Получают, в основном, компоненты моторных топлив. Технический результат - упрощение процесса каталитического крекинга с повышением выхода товарных продуктов, возможность создания промышленных установок небольшой единичной мощности для переработки 0,5-1,0 млн тонн нефти в год. 5 з.п. ф-лы, 2 табл.
СПОСОБ ГИДРОКОНВЕРСИИ ТЯЖЕЛЫХ УГЛЕВОДОРОДОВ ПРИ НИЗКОМ ДАВЛЕНИИ (ВАРИАНТЫ) | 1997 |
|
RU2181751C2 |
СПОСОБ ПЕРЕРАБОТКИ БИТУМИНОЗНЫХ ВЫСОКОСЕРНИСТЫХ НЕФТЕЙ | 1992 |
|
RU2095394C1 |
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ | 2001 |
|
RU2208625C2 |
СПОСОБ ПЕРЕРАБОТКИ НЕФТИ | 2004 |
|
RU2255959C1 |
US 4770764 A, 13.09.1988 | |||
US 5935419 A, 10.08.1999. |
Авторы
Даты
2007-06-10—Публикация
2006-04-10—Подача