Изобретение относится к гидрометаллургии редких металлов и может быть использовано для извлечения рения из растворов.
Известны способы извлечения рения, основанные на применении сорбционных материалов, имеющих в своем составе азотсодержащие функциональные группы. К ним относятся высокоосновные и низкоосновные аниониты, амфолиты (Ионообменные материалы для процессов гидрометаллургии, очистки сточных вод и водоподготовки: Справочник. 4-е издание. М.: ВНИИХТ. 1999. С.52).
Недостатком данных способов извлечения является характерная для высокоосновных анионитов низкая селективность при извлечении рения из промышленных растворов, невысокая скорость массообмена рения в сорбентах, достигающая нескольких часов, высокая стоимость и использование больших объемов смол при извлечении рения из растворов с низким содержанием.
Известны способы извлечения рения с использованием гранулированных полимеров, содержащих третичные амины. Например, для извлечения рения из нитратно-сульфатных растворов применяется импрегнат на основе триалкиламина общей формулы R3N (Софронов С.Н., Трошкина И.Д., Чекмарев A.M., Яваев Н.С. Извлечение рения из нитратно-сульфатных растворов нанесенными на пористый носитель экстрагентами // Тез. докл. Х Всес. конф. по экстракции. Уфа, 14-18 ноября 1994. М., 1994. С.137).
Наиболее близким к предлагаемому по технической сущности является способ извлечения рения экстрагирующим полимером, в котором для сорбции рения используют в качестве сорбента гранулированный сверхсшитый полистирол, импрегнированный 0,1-40% раствором триалкиламина общей формулы R3N, где R - алкильные радикалы (C8-C10) в органическом растворителе (пат. РФ №2227170, опубл. 20.04.2004 г.).
К недостаткам данного способа извлечения рения относятся недостаточно высокая скорость массообмена при извлечении рения, а также использование в качестве экстрагента для импрегнирования триалкиламина, обладающего токсическим действием.
Задачей изобретения является повышение эффективности способа извлечения рения за счет использования сорбционного материала, сочетающего достаточную сорбционную емкость с улучшенными кинетическими и экологическими свойствами.
Поставленная задача решается предлагаемым способом извлечения рения из растворов, включающим сорбцию рения на сорбционном материале, представляющем собой импрегнированную содержащими аминогруппы соединениями пористую матрицу, и последующую десорбцию рения, в котором в качестве сорбционного материала используют импрегнированный хитозаном углеродный волокнистый материал с высокоразвитой поверхностью, полученный электрохимической обработкой углеродного волокнистого материала в растворе хитозана в условиях анодной поляризации.
Сорбционный материал, используемый для извлечения рения предлагаемым способом, получают обработкой электропроводящего высокопористого углеродного волокнистого материала (УВМ), имеющего развитую поверхность, в растворе природного органического полимера - хитозана, следующим образом.
УВМ помещают в качестве рабочего электрода в стандартную электрохимическую ячейку, в которую заливают 0,05-0,5%-ный раствор хитозана в разбавленной соляной кислоте, содержащий примерно 0,1 М хлорида натрия (фоновый электролит) при соотношении массы углеродного волокнистого материала к массе раствора Т:Ж, равном 1:(100÷1000), и подвергают анодной поляризации. При достижении заданного потенциала в интервале от потенциала погружения до +1,5 В выдерживают рабочий электрод в течение времени, достаточного для формирования пленки хитозана. Затем УВМ с осажденной пленкой хитозана вынимают, промывают водой и сушат при температуре 25-120°С.
Получение сорбционного материала указанным образом, а именно, путем электрохимической обработки углеродного материала в 0,05-0,5% растворе хитозана в разбавленной соляной кислоте в присутствии хлорида натрия в интервале значений от потенциала погружения до потенциала +1,5 В относительно хлор-серебряного электрода сравнения, обеспечивает при извлечении рения из растворов оптимальные показатели сорбции - сорбционную емкость по рению и улучшенные кинетические характеристики процесса извлечения.
Известно, что при использовании в качестве сорбционного материала непосредственно хитозана его сорбционные свойства по отношению к отрицательно заряженным ионам металла (например, TcO4 -, ReO4 -) определяются значением рН растворов, из которых идет извлечение металла. При рН<6,5 хитозан имеет положительно заряженную поверхность, что предпочтительно для сорбции отрицательно заряженных ионов. В нейтральной и щелочной средах число протонированных аминогрупп хитозана незначительно для заметной сорбции анионов на хитозане. Таким образом, величина сорбционной емкости хитозана определяется числом протонированных аминогрупп на его поверхности (Е.Kim, M.F.Benedetti, J.Bouleque. Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium. Water Research 38, 2004, p.448-454).
Предназначенный для использования в заявляемом способе импрегнированный хитозаном УВМ содержит в своем составе аминогруппы, в том числе и протонированные. Такой сорбционный материал может быть получен в результате электрохимической обработки УВМ как при стационарном потенциале погружения углеродного волокнистого материала (т.е. при потенциале разомкнутой цепи), так и путем поляризации УВМ в анодную область до значения потенциала +1,5 В. Модифицирование углеродной матрицы хитозаном при анодной поляризации позволяет увеличить число протонированных аминогрупп, и, следовательно, положительный заряд поверхности, что приводит к увеличению сорбционной емкости по отношению к отрицательно заряженным ионам рения.
Напротив, электрохимическая обработка УВМ в растворе хитозана в катодной области потенциалов вследствие протекания катодной реакции с образованием гидроксид-иона в приэлектродном слое приводит к осаждению нерастворимой формы хитозана с нейтрализацией протонированных аминогрупп.
В случае обработки УВМ в анодной области при потенциалах поляризации выше +1,5 В наблюдается интенсивное газовыделение, которое может приводить к разрушению пленки сорбированного на поверхности хитозана, и сопровождаться окислением как поверхности УВМ, так и хитозановой пленки.
Извлечение рения из растворов по заявляемому способу можно проводить в статических или динамических условиях.
Десорбцию рения с насыщенного сорбционного материала осуществляют 7-10% аммиачным раствором аналогично известному способу.
Экспериментально установлено, что извлечение рения из растворов с использованием предлагаемых сорбционных материалов по сравнению с известным способом осуществляется с более высокой скоростью массообмена (т.е. с лучшими кинетическими свойствами) при достаточно высокой степени извлечения рения. Кроме того, использование для извлечения рения сорбционного материала, обработанного экологически безопасным природным биополимером хитозаном, делает способ экологически более безопасным, чем известный.
Таким образом, техническим результатом предлагаемого изобретения является повышение эффективности способа за счет использования сорбционного материала, обладающего достаточной сорбционной емкостью и улучшенными кинетическими и экологическими характеристиками.
Возможность осуществления изобретения подтверждается примерами.
Пример 1.
Извлечение рения проводили из раствора перрената аммония с содержанием рения 20 мг/дм3 в статических условиях, для чего навеску импрегнированного хитозаном углеродного волокнистого материала (Бусофит Т-055 производства Светлогорского ПО «Химволокно») массой 0,025 г, полученного электрохимической обработкой УВМ при заданном потенциале в анодной области +0,6 В (образец 1), приводили в контакт с 25 мл раствора рения (рН=7).
Для определения емкости сорбционного материала его навеску контактировали с раствором рения в течение 4 ч. После разделения фаз проводили анализ раствора и рассчитывали емкость сорбционного материала. Емкость по рению для образца 1 составила 18,5 мг/г, степень извлечения - 92,3%.
Для определения скорости массообмена такие же навески сорбционного материала контактировали с раствором рения в течение времени, указанного в таблице 1.
Доля сорбированного рения за 30 минут контактирования с раствором рения для образца 1 составляет 97% (по отношению к максимальному количеству сорбированного рения) (табл.1), в отличие от прототипа, в котором 98%-ая степень извлечения рения достигается за 90 мин.
Десорбцию рения с насыщенного сорбционного материала осуществляли раствором, содержащим 8% аммиака, и проводили в одну стадию. Навеску насыщенного рением сорбционного материала массой 0,025 г контактировали с 5 мл регенерирующего раствора при встряхивании. Раствор отбирали на анализ через сутки. Результаты десорбции приведены в таблице 2.
Пример 2.
Извлечение рения из раствора проводили как в примере 1, за исключением того, что для извлечения рения используют импрегнированный хитозаном углеродный волокнистый материал, полученный при потенциале разомкнутой цепи (изменение потенциала от потенциала погружения +0,26 В до стационарного потенциала +0,38 В) (образец 2).
Для данного образца сорбционного материала емкость по рению составила 16 мг/г, степень извлечения - 82,5%.
Доля сорбированного рения за 30 минут контактирования с раствором рения для образца 2 составляет 86% (по отношению к максимальному количеству сорбированного рения) (табл.1), в отличие от прототипа, в котором лучший образец показывает за такое же время степень извлечения рения, равную 62%.
Степень десорбции рения аммиаком составила 62,1% (таблица 2).
Пример 3.
Извлечение рения из раствора проводили как в примере 1, за исключением того, что для извлечения рения используют импрегнированный хитозаном углеродный волокнистый материал, полученный электрохимической обработкой УВМ при заданном потенциале в анодной области +1,2 В (образец 3).
Емкость сорбционного материала по рению для образца 3 составила 19 мг/г, степень извлечения - 95%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЕСОРБЦИИ РЕНИЯ | 2006 |
|
RU2321615C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ СОРБЦИОННЫХ МАТЕРИАЛОВ | 2004 |
|
RU2281160C1 |
СПОСОБ ВЫДЕЛЕНИЯ И ОЧИСТКИ БЫЧЬЕГО СЫВОРОТОЧНОГО АЛЬБУМИНА | 2005 |
|
RU2289588C2 |
Способ извлечения рения из водных растворов | 2016 |
|
RU2637452C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЦИОННОГО МАТЕРИАЛА | 2017 |
|
RU2645131C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА, СЕЛЕКТИВНОГО К РАДИОНУКЛИДАМ ЦЕЗИЯ (ВАРИАНТЫ) | 2009 |
|
RU2412757C1 |
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов | 2018 |
|
RU2689616C1 |
СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ОТ ИОНОВ СТРОНЦИЯ И КАЛЬЦИЯ (ВАРИАНТЫ) | 2002 |
|
RU2223232C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКОГО СОРБЕНТА НА ОСНОВЕ ОКСИДОВ МАРГАНЦА (III, IV) | 2002 |
|
RU2218209C1 |
КОМПОЗИЦИОННЫЙ РЕГЕНЕРИРУЕМЫЙ АДСОРБЦИОННЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО РЕГЕНЕРАЦИИ | 2000 |
|
RU2171139C1 |
Изобретение относится к гидрометаллургии редких металлов и может быть использовано для извлечения рения из растворов. Способ включает сорбцию рения на сорбционном материале, представляющем собой импрегнированный хитозаном углеродный волокнистый материал (УВМ) с высокоразвитой поверхностью. Сорбционный материал получают путем электрохимической обработки УВМ в 0,05-0,5% растворе хитозана в разбавленной соляной кислоте в присутствии хлорида натрия (фоновый электролит) в условиях анодной поляризации в интервале значений от потенциала погружения до потенциала +1,5 В относительно хлорсеребряного электрода сравнения. Десорбцию рения осуществляют 7-10% раствором аммиака. Техническим результатом изобретения является повышение эффективности способа извлечения рения из растворов за счет использования сорбента, сочетающего достаточную сорбционную емкость с улучшенными кинетическими и экологическими характеристиками. 2 з.п. ф-лы, 2 табл.
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ | 2002 |
|
RU2227170C1 |
CA 2062146 A, 07.09.1992 | |||
JP 2003201527 A, 18.07.2003 | |||
Прибор, замыкающий сигнальную цепь при повышении температуры | 1918 |
|
SU99A1 |
JP 59136436 A, 06.08.1984 | |||
US 4572823 A, 25.02.1986. |
Авторы
Даты
2007-07-27—Публикация
2005-11-10—Подача