ТЕРМОИЗОЛЯЦИОННАЯ МАССА Российский патент 2007 года по МПК C04B28/26 C04B35/66 C04B111/40 

Описание патента на изобретение RU2312086C1

Настоящее изобретение относится к области строительных материалов, в частности, к термоизоляционным массам, предназначенным для теплоизоляции тепловых, печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1150°С.

Известна сырьевая смесь для изготовления золокерамических теплоизоляционных изделий (RU 2057742, С04В 38/08, бюл. №17, 06.20.2000), которая включает огнеупорную глину 2-50 мас.% и легкую фракцию золы-уноса ТЭС 50-98 мас.%. Получаемый из данной сырьевой смеси материал характеризуется плотностью 0,5-0,75 г/см3, прочностью при изгибе 0,5-4,0 МПа, теплопроводностью 0,17-0,24 Вт/(м·К).

Недостатками такой сырьевой смеси является высокая теплопроводность и плотность.

Наиболее близким аналогом по технической сущности к заявляемому изобретению является термоизоляционная масса (RU 2081086, С04В 28/26, бюл. №33, 11.27.2001) при следующем соотношении ингредиентов, мас.%:

жидкое стекло плотностью 1,4-1,5 г/см330-32огнеупорная глина порошкообразная50-55древесные опилки18-20вода до получения консистенции, удобной для работы

Теплопроводность термоизоляции 0,3 Вт/(м·К).

Недостатком такой термоизоляционной массы является высокая теплопроводность.

Настоящее изобретение направлено на создание новой термоизоляционной массы с пониженной теплопроводностью при обеспечении прочности, достаточной для практического применения и одновременной утилизации промышленных отходов.

Поставленная техническая задача достигается тем, что термоизоляционная масса, включающая жидкое стекло плотностью 1,4-1,5 г/см3, кембрийскую глину, гранулированный доменный шлак с Мкр=2,0-2,8, тонкодисперсный нефелиновый шлам, осадок очистных сооружений станций водоподготовки с влажностью 80%, содержит, мас.%:

жидкое стекло плотностью 1,4-1,5 г/см323,0-28,0кембрийская глина8,0-12,0гранулированный доменный шлак с Мкр=2,0-2,849,0-60,0тонкодисперсный нефелиновый шлам3,0-8,0осадок очистных сооружений станций водоподготовкис влажностью 80%2,0-7,0

Другое отличие заявляемого состава термоизоляционной массы заключается в том, что она содержит вместо огнеупорной глины кембрийскую легкоплавкую глину, а вместо воды, согласно предлагаемому изобретению, осадок очистных сооружений станций водоподготовки с влажностью 80%.

Нефелиновый шлам - попутный продукт, образующийся в процессе производства глинозема с содержанием β-2CaO·SiO2 от 75 до 80%. Основная масса представляет собой β-2CaO·SiO2 в виде мелких зерен и агрегатных скоплений. Кроме того, наблюдаются мелкие зерна продуктов гидратации 2Ca·SiO2. Общее количество гидратированных частиц составляет 5-7%, присутствуют зерна нефелина и оксидов железа.

Осадок очистных сооружений станций водоподготовки представляет собой коллоидный осадок влажностью 80%, имеющий следующий химический состав, мас.%:

Al(ОН)3·Н2O31,5%Fe(OH)3·H2O3,5%SiO215,6%Al2(SO4)30,4%AlPO40,3%MgF20,8%CaF21,05Органические примеси27,0%Гидратная вода, в основном состоящая из гидроокиси Al, остальное

На дату подачи заявки, по мнению авторов и заявителя, заявляемая смесь неизвестна и данное техническое решение обладает новизной.

Заявляемая совокупность существенных признаков проявляет новое свойство, которое позволяет получить технический результат.

Совместное присутствие тонкомолотых нефелинового шлама, гранулированного доменного шлака с Мкр=2,0-2,8, осадка очистных сооружений станций водоподготовки с влажностью 80%, кембрийской глины и жидкого стекла приводит к твердению термоизоляционной массы, а также образованию силикатов алюминия, отличающихся низким значением коэффициента теплопроводности. Осадок очистных сооружений станций водоподготовки имеет частицы наноразмера, что способствует активизации поверхности зерен заполнителя и аморфизации новообразований. Гидроксид алюминия, из которого в основном состоит осадок очистных сооружений, является неорганическим полимером с разветвленной структурой, а d-металлы, находящиеся в осадке, способствуют образованию оксидов тяжелых металлов при обжиге, что значительно снижает теплопроводность. Таким образом, усложнение фазового состава и аморфизация приводит к более низкому значению теплопроводности всей системы.

Оптимальное содержание жидкого стекла в термоизоляционной массе - 23,0-28,0%. При выходе за пределы оптимального содержания понижается прочность при сжатии термоизоляционной массы. При введении тонкодисперсного нефелинового шлама менее 3,0% увеличивается время твердения термоизоляционной массы. Увеличение содержания нефелинового шлама сверх 8% снижает прочность при сжатии термоизоляционной массы.

Содержание гранулированного шлака с Мкр=2,0-2,8 менее 49% увеличивает коэффициент теплопроводности термоизоляционной массы, а увеличение его более 60% влечет за собой повышенный расход жидкого стекла в составе смеси, что снижает огнеупорность композиции, а следовательно, и температуру применения термоизоляционной массы. Увеличение содержания осадка очистных сооружений станций водоподготовки с влажностью 80% - более 7% приводит к снижению прочности термоизоляционной массы после обжига, а уменьшение - менее 2% к снижению термостойкости и повышению теплопроводности.

Учитывая вышеизложенное, можно сделать вывод, что предлагаемый состав термоизоляционной массы явным образом не следует из уровня техники, и вся совокупность существенных признаков проявляет новое свойство, позволяющее достичь указанного технического результата, т.е. изобретение соответствует критерию охраноспособности - "изобретательский уровень".

Пример конкретного выполнения

Изготовление термоизоляционной массы

1. Дозируют тонкодисперсные нефелиновый шлам, кембрийскую глину и гранулированный шлак с Мкр=2,0.

2. Дозируют жидкое стекло плотностью 1,48 г/см3.

3. Приготавливают термоизоляционную массу, смешивая отдозированные компоненты в бетономешалке в течение 3-5 минут.

4. Дозируют осадок очистных сооружений станций водоподготовки с влажностью 80% до рабочей консистенции смеси.

5. Жаростойкая термоизоляционная масса используется для изготовления изделий требуемой формы и образцов для проведения физико-механических испытаний методом литья.

6. Твердение термоизоляционной массы осуществляется в течение 1 часа в нормальных условиях.

7. Затвердевшие образцы вынимают из форм и сушат при температуре 100-110°С.

8. Высушенные образцы готовы к эксплуатации.

9. После эксплуатации при плюс 1000°С, образцы испытывались на прочность и теплопроводность.

Для определения физико-механических характеристик термоизоляционной массы (плотности и прочности на сжатие), изготавливались образцы-кубы с размером ребра 100 мм. Для определения коэффициента теплопроводности по ГОСТ 7076-99 изготовлялись плитки размером 100 мм·100 мм и высотой 20 мм. Физико-механические характеристики термоизоляционной массы представлены в таблице.

Анализ данных таблицы показывает, что предлагаемый состав обеспечивает получение термоизоляционной массы, у которой коэффициент теплопроводности снижается до 0,15-0,16 Вт/(м·К), и, следовательно, расширяется диапазон применения. При получении термоизоляционной массы заявляемого состава используются побочные продукты станций водоподготовки и строительства (кембрийская глина из отвалов), что благоприятно сказывается на экологической обстановке, а также снижает себестоимость продукции.

Термоизоляционная масса, характеризуемая физико-механическими характеристиками, указанными в таблице, может быть использована для изготовления теплоизоляционных изделий, с температурой применения до плюс 1150°С, к которым предъявляют повышенные требования по теплозащитным свойствам.

Масса указанного состава отличается рядом преимуществ.

По сравнению с другими термоизоляционными массами она дешевле, не содержит дефицитных материалов, а именно огнеупорной глины, в условиях работы тепловых агрегатов более надежна и приготовление ее не требует специальных мер по защите атмосферы.

Анализируя данные таблицы, можно сделать вывод, что термоизоляционная масса характеризуется снижением теплопроводности на 50% (λ=0,15-0,16 Вт/(м·К)), что улучшает теплозащитные свойства массы, и достигается попутный эффект утилизации отходов.

ТаблицаСостав и свойства термоизоляционной массыТермоизоляционная масса, состав, мас.%№ п/пЖидкое стекло ρ=1,4-1,5 г/см3Огнеупорная глина порошкообразнаяДревесные опилкиВодаГранулированный шлакТонкомолотый нефелиновый шламОсадок очистных сооруженийКембрийская глинаПрочность при сжатии, МПаЖаростойкость,°сТеплопроводность λ, Вт/(м·К)Прототип30-3250-558-20Остальное--0,3128,0---49,03,02,08,013,8511500,16225,5---54,55,54,510,014,22511500,155323,0---60,08,07,012,014,6011500,15

Похожие патенты RU2312086C1

название год авторы номер документа
ТЕРМОИЗОЛЯЦИОННАЯ МАССА 2008
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Кривокульская Анна Мирославовна
  • Бабак Наталья Анатольевна
RU2370468C1
ТЕРМОИЗОЛЯЦИОННАЯ МАССА 2010
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
RU2426707C1
ЖАРОСТОЙКАЯ КЛАДОЧНАЯ СМЕСЬ 2009
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
  • Славина Анна Мирославовна
  • Кривокульская Татьяна Мирославовна
RU2388714C1
ЖАРОСТОЙКАЯ КЛАДОЧНАЯ СМЕСЬ 2011
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
  • Мархель Наталья Викторовна
RU2460705C1
ЖАРОСТОЙКИЙ ШЛАКОЩЕЛОЧНОЙ ПЕНОБЕТОН 2006
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Абу-Хасан Махмуд
  • Шершнева Мария Владимировна
  • Кияшко Алексей Геннадьевич
  • Бухарина Дарья Николаевна
RU2306301C1
Термоизоляционная масса 2023
  • Масленникова Людмила Леонидовна
  • Абу-Хасан Махмуд
  • Ушаков Антон Витальевич
RU2823640C1
Термоизоляционная масса 2018
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Нагинский Игорь Александрович
  • Пластун Екатерина Олеговна
  • Зубкова Татьяна Евгеньевна
  • Васильева Алёна Александровна
RU2684656C1
ТЕРМОИЗОЛЯЦИОННАЯ МАССА 2012
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
  • Мархель Наталья Викторовна
RU2497773C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО ОГНЕУПОРНОГО БЕТОНА 2016
  • Нургалиев Денис Фанисович
  • Сизяков Виктор Михайлович
  • Утков Владимир Афонасьевич
  • Сизякова Екатерина Викторовна
RU2626480C1
КЕРАМИЧЕСКАЯ МАССА СВЕТЛОГО ТОНА ДЛЯ ЛИЦЕВОГО КИРПИЧА 2009
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Славина Анна Мирославовна
  • Бабак Наталья Анатольевна
RU2397153C1

Реферат патента 2007 года ТЕРМОИЗОЛЯЦИОННАЯ МАССА

Термоизоляционная масса относится к области строительных материалов, в частности, к термоизоляционным массам, предназначенным для теплоизоляции тепловых печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1150°С. Термоизоляционная масса содержит, мас.%: жидкое стекло плотностью 1,4-1,5 г/см3 23,0-28,0, кембрийскую глину 8,0-12,0, гранулированный доменный шлак с Мкр=2,0-2,8 49,0-60,0, тонкодисперсный нефелиновый шлам 3,0-8,0, осадок очистных сооружений станций водоподготовки с влажностью 80% 2,0-7,0. Технический результат - уменьшение теплопроводности при обеспечении прочности, достаточной для практического применения. 1 табл.

Формула изобретения RU 2 312 086 C1

Термоизоляционная масса, содержащая жидкое стекло плотностью 1,4-1,5 г/см3 и глину, отличающаяся тем, что она содержит глину кембрийскую и дополнительно содержит гранулированный доменный шлак с Мкр=2,0-2,8, тонкодисперсный нефелиновый шлам, осадок очистных сооружений станций водоподготовки с влажностью 80% при следующих соотношениях компонентов, мас.%:

жидкое стекло плотностью 1,4-1,5 г/см323,0-28,0кембрийская глина8,0-12,0гранулированный доменный шлак с Мкр=2,0-2,849,0-60,0тонкодисперсный нефелиновый шлам3,0-8,0осадок очистных сооружений станцийводоподготовки с влажностью 80%2,0-7,0

Документы, цитированные в отчете о поиске Патент 2007 года RU2312086C1

ТЕРМОИЗОЛЯЦИОННАЯ МАССА 1993
  • Зайцев Юрий Сергеевич[Ua]
  • Филипьев Олег Владимирович[Ua]
  • Зайцева Наталия Николаевна[Ua]
  • Терещенко Владимир Петрович[Ua]
  • Ноздрачев Валерий Андреевич[Ua]
  • Клименко Анатолий Петрович[Ua]
  • Штукарин Игорь Владимирович[Ua]
RU2081086C1
СЫРЬЕВАЯ СМЕСЬ 2003
  • Сватовская Л.Б.
  • Масленникова Л.Л.
  • Зуева Н.А.
  • Махмуд Абу-Хасан
  • Якимова Н.И.
RU2243952C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ОГНЕУПОРНОГО МАТЕРИАЛА 2001
  • Владимиров В.С.
  • Мойзис С.Е.
  • Карпухин И.А.
  • Корсун С.Д.
  • Долгов В.И.
RU2197450C1
МАССА ДЛЯ ОГНЕУПОРНЫХ ИЗДЕЛИЙ 2003
  • Гусев А.И.
  • Калинин А.В.
  • Калинина О.В.
RU2247096C1
Смесь для изготовления теплоизоляционного материала 1982
  • Худяков Иван Николаевич
  • Озеров Юрий Васильевич
  • Джуринский Исаак Аронович
  • Черноусов Павел Федорович
SU1076421A1
Способ измерения постоянного напряжения 1983
  • Яковлев Валерий Александрович
  • Харин Павел Васильевич
  • Захаров Евгений Алексеевич
  • Шатулина Нина Ивановна
SU1153299A1
СПОСОБ СЕЙСМОИЗОЛЯЦИИ ФУНДАМЕНТОВ ЗДАНИЙ И СООРУЖЕНИЙ 1991
  • Пышкин Б.А.
  • Борисов Е.К.
  • Федоров В.И.
RU2081246C1

RU 2 312 086 C1

Авторы

Сватовская Лариса Борисовна

Масленникова Людмила Леонидовна

Якимова Наталия Игоревна

Шершнева Мария Владимировна

Киселева Лидия Алексеевна

Бухарина Дарья Николаевна

Суконников Виктор Валерьевич

Платонов Алексей Сергеевич

Даты

2007-12-10Публикация

2006-04-10Подача