КЕРАМИЧЕСКИЙ ПИРОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ ДЛЯ НЕОХЛАЖДАЕМЫХ ПРИЕМНИКОВ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ Российский патент 2008 года по МПК C04B35/468 

Описание патента на изобретение RU2326856C2

Изобретение относится к области электроники, более конкретно к пироэлектрическим материалам для неохлаждаемых приемников инфракрасного излучения диапазона 8-14 мкм.

Известно применение керамических материалов на основе титаната бария-стронция в неохлаждаемых приемниках инфракрасного (ИК) излучения.

Такого типа материалы должны обладать определенным комплексом свойств: пироэлектрическим коэффициентом выше 250 нКл/см2·К, диэлектрической проницаемостью не выше 18000, тангенсом угла потерь ниже 18×10-3, теплоемкостью не выше 500 Дж/кг·К, критерием качества материала выше 350×10-6, размером зерна 1-5 мкм и удовлетворительными технологическими свойствами.

Критерий качества материала (Мd) характеризует отношение сигнал/шум, где доминирующим шумом является шум диэлектрических потерь.

где S/N материала - отношение сигнал/шум;

Md - критерий качества материала (относительный показатель пироэлектрических свойств материала)

γ - пироэлектрический коэффициент;

С - теплоемкость образца;

ε - относительная диэлектрическая проницаемость;

ε0=8,85×10-12 Ф/м - диэлектрическая проницаемость вакуума.

Критерий качества измеряется в относительных единицах.

Известны керамические материалы на основе титаната бария-стронция с различными легирующими добавками: US п.5434410, оп.18.07.95 г. с легирующими добавками Nb, Та, Bi, Sb, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er - как донорами и Cu, Fe, Mn, Ru, Al, Ga, Mg, Sc, K, Na, U, B, Mg, Ni, Yb - как акцепторами, и их комбинацией;

US п.5314651, оп.24.05.94 г. с легирующими добавками Nb, Та, Bi, Sb, Y, La, Се, Pr, Nd. Sm, Gd, Tb, Dy, Но, Er - как донорами и Со, Cu, Fe, Mn, Ru, Al, Ga, Mg, Sc, К, Na, U, In, Mg, Ni, Yb - как акцепторами, и их комбинацией;

US п.5566046, оп.15.10.96 г. с легирующими добавками - донорами: Nb, Та, Bi, Sb, Y, La, Се, Pr, Nd, Sm, Gd, Tb, Dy, Но, Er и их комбинацией.

Эти керамические материалы обладают высоким пироэлектрическим коэффициентом 90-225 нКл/см2·К, при температуре от 0 до 150°С, что позволяет создавать приемники на их основе чувствительные в ИК-области спектра в диапазоне 1-12 мкм.

Однако они обладают недостаточным пироэлектрическим коэффициентом (ниже 225 нКл/см2·K), низким критерием качества материала 350×10-6 и сложной технологией получения чистых материалов.

В качестве прототипа был выбран пироэлектрический материал на основе татаната бария-стронция с легирующими добавками Nb, Та, Bi, Sb, Y, La, Се, Pr, Nd, Sm, Gd, Tb, Dy, Но, Er - как донорами и Cu, Fe, Mn, Ru, Al, Ga, Mg, Sc, К, Na, U, В, Mg, Ni, Yb как акцепторами и их комбинацией (US п. №5,434,410, оп.18.07.95 г.).

Однако, обладая вышеперечисленными преимуществами, этот материал имеет недостаточный пироэлектрический коэффициент, ниже 225 нКл/см2·K, низкий критерий качества материала, ниже 310×10-6, что приводит к низкой чувствительности неохлаждаемого приемника ИК-излучения до разности температур, эквивалентной шуму 0,1°С, при фокальном числе объектива F=1,5 в диапазоне 8-14 мкм. Кроме того, материал имеет высокую температуру спекания, что сказывается на его свойствах (большая теплоемкость, сложность регулирования размера зерен) и в итоге приводит к сложной технологии приготовления материала.

Задачей изобретения является создание пироэлектрического керамического материала на основе титаната бария-стронция для неохлаждаемых приемников ИК-излучения, имеющих высокую чувствительность, у которых пирокоэффициент выше 225 нКл/см2·К, высоким критерием качества не менее 350×10-6, диэлектрической проницаемостью не выше 18000, обладающего температурой обжига не более 1150°С и размером зерна не более 7 мкм, тангенсом угла потерь ниже 18×10-3.

Решение задачи достигается тем, что известный керамический пироэлектрический материал для неохлаждаемых приемников инфракрасного излучения, содержащий поликристаллический титанат бария-стронция с легирующими добавками MnO и Dy2О3, дополнительно содержит легирующую добавку ZnO, при следующем соотношении компонентов, мас.%: MnO - 0,05-0,6; Dy2О3 - 0,1-0.8; ZnO - 0,1-1,5; титанат бария-стронция - остальное.

Заявляемый материал позволяет достичь пироэлектрического коэффициента выше 300 нКл/см2·K, при диэлектрической проницаемости ниже 18000, температуре спекания ниже 1250°С, размере зерна в материале в пределах 1-5 мкм, тангенсе угла потерь 15,8×10-3.

Добавка MnO повышает температуру спекания и позволяет понизить диэлектрическую проницаемость, что повышает параметр критерия качества материала.

Кроме того, добавка оксида марганца позволяет повысить устойчивость материала к электрохимическому старению.

Добавка в титанат бария-стронция MnO свыше 0,6% приводит к повышению температуры спекания более чем 1450°С.

Добавка MnO менее 0,05% приводит к повышению диэлектрической проницаемости и соответственно понижается критерий качества.

Рентгеноструктурный анализ показал, что формирование основного твердого раствора на стадии синтеза достигается только в присутствии оксида цинка. Добавка ZnO способствует также снижению температуры спекания используемого состава легированной керамики (температура обжига основного состава становится ниже 1250°С).

Применяя оксид цинка, повысился параметр критерия качества до 444,6, также увеличилось отношение пироэлектрического коэффициента к диэлектрической проницаемости.

При добавке ZnO более 1,5% увеличивается размер зерна выше 15 мкм, падает пироэлектрический коэффициент, вследствие чего пироэлектрические свойства материала не будут отвечать требованиям по созданию пироэлектрической матрицы для неохлаждаемого приемника ИК-излучения.

При добавке ZnO ниже 0,1% не сформировывается основной состав титанат бария-стронция, вследствие чего пироэлектрические свойства материала не будут отвечать требованиям по созданию пироэлектрической матрицы для неохлаждаемого приемника ИК-излучения.

Добавка в титанат бария-стронция Dy2O3 ниже 0,1% приводит к низкому показателю критерия качества материала, вследствие повышения диэлектрической проницаемости и увеличению размера зерна более 10 мкм. Все это приводит к сложности производства при относительно низких свойствах материала (критерий качества, удельное сопротивление, тангенс угла потерь).

Добавка Dy2O3 выше 0,8% приводит к повышению точки Кюри более 35°С, то есть выше оптимальной 30°С, к неравномерности структуры по объему материала, что приводит к низкому значению пироэлектрического коэффициента, низкому показателю критерия качества материала и, как следствие, к низкой чувствительности в неохлаждаемых приемниках ИК-излучения.

Как показали экспериментальные данные, заявляемый материал имеет пироэлектрический коэффициент выше 300 нКл/см2·K, позволяющий увеличить чувствительность пироэлектрического приемника ИК-излучения и достичь разности температур, эквивалентной шуму не выше 0,05°С, при фокальном числе объектива F=1,5 в диапазоне 8-14 мкм. А такие параметры заявляемого материала, как диэлектрическая проницаемость ε=12,5×103, тангенс угла потерь tgδ=15,8×10-3, рабочая температура (фазовый переход происходит при 30°С), подтверждают возможность повышения критерия качества пироэлектрического материала, повышения пироэлектрического коэффициента, а следовательно, и повышения чувствительности неохлаждаемого приемника ИК-излучения выше 300 нКл/см2·К, с эквивалентной шуму разностью температур (минимальная обнаруживаемая разность температур) ниже 0,05°С, при фокальном числе объектива, равном 1,5 (F=1,5) в диапазоне 8-14 мкм.

Пример конкретного выполнения

Твердые растворы (Ва, Sr, Ca) TiO3 были получены по технологии совместного разложения в процессе синтеза раздельно полученных титанилоксалатов бария, стронция и кальция. Титанилоксалаты смешивались в вибрационной мельнице совместно с легирующими добавками, затем прокаливались при температуре 800°С, при этом из титанилоксалатов удаляется кристаллизационная вода, углекислый газ и образуется твердый раствор титанатов. Из полученного порошка с добавлением связующего материала (10% водного раствора поливинилового спирта) прессовались заготовки в виде дисков. Спекание дисков производилось в электрической печи с силитовыми нагревателями. Заготовки после обжига шлифовались и полировались, а затем на них наносились серебряные электроды.

Электрические характеристики, пироэлектрический коэффициент, критерий качества, температура спекания для заявляемого материала на основе титанат бария-стронция - керамики с различными добавками и различным их содержанием, представлены в таблице 1.

В таблице 1 образец под номером 1-7 соответствует заявляемому составу, а под номером 8-9 - не соответствуют заявляемому составу и соответственно имеют параметры, не удовлетворяющие поставленной задаче. В образце 9 содержание ZnO меньше 0,1%, вследствие чего не сформировывается основной состав титаната бария-стронция. В образце 10 содержание ZnO больше 1,5% - увеличивается размер зерна, низкий пироэлектрический коэффициент и остальные параметры материала не соответствуют требованию для создания пироэлектрической матрицы для неохлаждаемого приемника ИК-излучения.

Параметры материала-прототипа, а также пироэлектрический коэффициент и критерий качества для материала-прототипа, электрические характеристики представлены в таблице 2.

Таблица 2Параметры материала-прототипаМатериалДонор, %Акцептор, %Размер зерна, мкмПирокоэффициент, γ нКл/см2·ККритерий качества, Mds×106, при 30°С(Baa Srb Cac)TiO3Y/0,6Mn/0,14,282197La/0,7Mn/0,10,955125Sm/0,7Mn/0,11,7173248Dy/0,5Mn/0,11,8225345

Как видно из приведенных данных (таблица 1, и таблица 2), заявляемый материал на основе титанат бария-стронция керамики с легирующими добавками Dy2O3; ZnO и MnO имеет по сравнению с прототипом более высокие характеристики, например материал на основе титанат бария-стронция керамики с легирующими добавками 0,2% Dy2O3; 0,15% ZnO и 0,1 MnO имеет, по сравнению с прототипом, пироэлектрический коэффициент выше на 75 нКл/см2·K, критерий качества на 101×10-6, при этом заявляемый материал имеет точку Кюри, равную 30°С, в прототипе 150°C.

Таким образом, применение заявляемого материала на основе титаната бария-стронция с легирующими добавками Dy2O3, ZnO, MnO позволит получить высокочувствительный неохлаждаемый приемник ИК-излучения с эквивалентной шуму разностью температуры (минимальная обнаруживаемая разность температур) ниже, чем на 0,05°С, при фокальном числе объектива, равном 1,5 (F=1,5), работающий в диапазоне 8-14 мкм, с пирокоэффициентом 300 нКл/см2·K, критерием качества 444,6×10-6, диэлектрической проницаемостью 12500, обладающего температурой обжига не более 1250°С, размером зерна 3 мкм, тангенсом угла потерь 15,8×10-3.

Похожие патенты RU2326856C2

название год авторы номер документа
Сегнетоэлектрический материал 2022
  • Шут Виктор Николаевич
RU2786939C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2010
  • Резниченко Лариса Андреевна
  • Разумовская Ольга Николаевна
  • Андрюшин Константин Петрович
  • Вербенко Илья Александрович
  • Андрюшина Инна Николаевна
  • Миллер Александр Иванович
RU2440954C2
НИЗКОТЕМПЕРАТУРНЫЙ СТЕКЛОКЕРАМИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОННОЙ ТЕХНИКИ 2020
  • Пашков Дмитрий Александрович
  • Погребенков Валерий Матвеевич
RU2753522C1
СЕГНЕТОКЕРАМИЧЕСКИЙ КОНДЕНСАТОРНЫЙ ДИЭЛЕКТРИК ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ КОНДЕНСАТОРОВ ТЕМПЕРАТУРНО-СТАБИЛЬНОЙ ГРУППЫ 2009
  • Ротенберг Борис Абович
  • Рубинштейн Олег Вениаминович
RU2413325C1
ДИЭЛЕКТРИЧЕСКАЯ ПОЛИМЕРНАЯ ПЕНА И ЛИНЗА ДЛЯ РАДИОВОЛН С ЕЕ ИСПОЛЬЗОВАНИЕМ 2001
  • Аки Минору
  • Монде Хироюки
  • Табути Акира
  • Тати Йосифуми
  • Каваками Сиоуго
  • Курода Масатоси
  • Кисимото Тецуо
  • Кимура Коуити
RU2263124C2
ПЬЕЗОКЕРАМИЧЕСКИЙ МАТЕРИАЛ 2007
  • Мирошников Петр Васильевич
  • Забелина Виктория Александровна
  • Сегалла Андрей Генрихович
  • Сафронов Алексей Яковлевич
  • Климашин Виталий Михайлович
RU2357942C1
ПЬЕЗОКЕРАМИЧЕСКИЙ МАТЕРИАЛ 2000
  • Вусевкер Ю.А.
  • Панич А.Е.
  • Смотраков В.Г.
  • Еремкин В.В.
  • Ладакин Г.К.
RU2186748C2
КЕРАМИЧЕСКИЙ МАТЕРИАЛ ПРЕИМУЩЕСТВЕННО ДЛЯ НИЗКОЧАСТОТНЫХ КОНДЕНСАТОРОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1991
  • Костомаров Сергей Владимирович[By]
  • Егоров Леонид Ильич[By]
  • Филоненко Валерий Иванович[By]
  • Самойлов Владимир Васильевич[By]
RU2023706C1
МНОГОСЛОЙНЫЙ ПИРОЭЛЕКТРИЧЕСКИЙ ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ 2009
  • Захаров Юрий Николаевич
  • Панченко Евгений Михайлович
  • Раевский Игорь Павлович
  • Резниченко Лариса Андреевна
  • Пипоян Рубен Арамаисович
  • Раевская Светлана Игоревна
  • Лутохин Александр Геннадиевич
  • Павелко Алексей Александрович
RU2413186C2
СПОСОБ ПРИГОТОВЛЕНИЯ ШИХТЫ ДЛЯ ПОЛУЧЕНИЯ ПЬЕЗОКЕРАМИЧЕСКОГО МАТЕРИАЛА 2013
  • Свирская Светлана Николаевна
  • Мараховский Михаил Алексеевич
  • Нагаенко Александр Владимирович
  • Дыкина Любовь Александровна
RU2532440C1

Реферат патента 2008 года КЕРАМИЧЕСКИЙ ПИРОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ ДЛЯ НЕОХЛАЖДАЕМЫХ ПРИЕМНИКОВ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Изобретение относиться к области электроники, а именно к пироэлектрическим материалам для неохлаждаемых приемников инфракрасного излучения диапазона 8-14 мкм. Керамический пироэлектрический материал для неохлаждаемых приемников инфракрасного излучения содержит поликристаллический титанат бария-стронция с легирующими добавками. В качестве легирующих добавок материал содержит MnO, Dy2О3, ZnO при следующем соотношении компонентов, мас.%: MnO - 0,05-0,1; Dy2O3 - 0,1-0,2; ZnO - 0,05-0,15; титанат бария-стронция - остальное. Технический результат изобретения: материал обладает высоким пироэлектрическим коэффициентом, высоким критерием качества и низкой диэлектрической проницаемостью, а также низкой температурой обжига. 2 табл.

Формула изобретения RU 2 326 856 C2

Керамический пироэлектрический материал для неохлаждаемых приемников инфракрасного излучения, содержащий поликристаллический титанат бария-стронция с легирующими добавками MnO и Dy2О3, отличающийся тем, что он содержит легирующую добавку ZnO при следующем соотношении компонентов, мас.%:

MnO 0,05-0,6Dy2O3 0,1-0,8ZnO 0,1-1,5Титанат бария-стронция остальное

Документы, цитированные в отчете о поиске Патент 2008 года RU2326856C2

US 5434410 А, 18.07.1995
Шихта для сегнетоэлектрического керамического материала 1981
  • Андреева Нина Александровна
  • Жуковский Вячеслав Илиодорович
  • Макарова Галина Николаевна
  • Ротенберг Борис Абович
  • Андреев Дмитрий Алексеевич
  • Константинов Олег Владиславович
SU948973A1
RU 2075462 С1, 20.03.1997
US 6074971 B1, 13.06.2000
Транспортное средство со съемным кузовом 1975
  • Мощонский Борис Николаевич
  • Ульянов Герман Александрович
  • Брейдо Михаил Владимирович
  • Кюршунов Станислав Николаевич
SU534378A1

RU 2 326 856 C2

Авторы

Степанов Рудольф Михайлович

Ротенберг Борис Абович

Мороз Сергей Александрович

Даты

2008-06-20Публикация

2006-06-08Подача