СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ Российский патент 2008 года по МПК B22F9/24 C01B13/14 B82B3/00 

Описание патента на изобретение RU2337791C2

Изобретение относится к области порошковой металлургии, в частности к способам получения ультра-нанодисперсных порошков оксидов переходных металлов.

Известен способ получения нанодисперсных порошков, в частности диоксида титана с использованием в качестве исходных органических соединений соответствующего металла (Патент РФ №2252817, МКИ B01J 19/08, 2005 год).

Недостатком известного способа является сложность технологии получения. Известный способ включает подачу исходного вещества в парообразном состоянии в область СВЧ-разряда и нагрев плазмообразующего азота, что требует значительных энергетических затрат. Кроме того, выделяются газообразные органические соединения, требующие их улавливания.

Наиболее близким к предлагаемому способу является способ получения поверхностно-активного оксида титана (патент США №6919029, МКИ C02F 1/28, 2005) (прототип). Способ включает кипячение руды (ильменит) при температуре 100°С в серной кислоте, выщелачивание водой или слабой серной кислотой с образованием сульфатов титана и железа. Далее проводят охлаждение, кристаллизацию с образованием нерастворимых сульфатов железа, которые выводят в виде осадка, а оксисульфат титана обрабатывают гидроксидом натрия при рН˜7 и подвергают гидролизу и кипячению в течение двух часов или дольше при температуре 50-180°С до образования осадка, который представляет собой оксид титана со структурой анатаза. Полученный осадок дробят и просеивают до получения среднего размера частиц 150 μм. В случае необходимости получения оксида титана со структурой рутила осадок кальцинируют на воздухе при температуре 700-1000°С.

Недостатком известного способа получения порошка оксида титана является длительность процесса за счет наличия операции выпаривания растворов и, в случае получения рутила, отжига осадка при высоких температурах (до 1000°С), что в свою очередь обусловливает и большую энергоемкость процесса.

Таким образом, перед авторами стояла задача разработать способ получения ультра-нанодисперсного порошка оксида переходного металла, в частности оксида титана или смеси оксидов переходных металлов, который бы позволил сократить время процесса получения и снизить энергетические затраты.

Поставленная задача решена в предлагаемом способе получения ультра-нанодисперсного порошка оксида переходного металла, в частности оксида титана или смеси оксидов переходных металлов, включающем нейтрализацию раствора сульфатного соединения переходного металла или раствора сульфатных соединений переходных металлов, отделение примесных сульфатов от полученного гидроксида металла или от полученных гидроксидов металлов и последующую обработку полученного гидроксида металла или гидроксидов металлов, в котором нейтрализацию раствора осуществляют при рН в диапазоне 7,0-7,5, а последующую обработку осуществляют микроволновым излучением с частотой в интервале 2450-3000 МГц при мощности 600-700 Вт.

В настоящее время не известен способ получения порошка оксида переходного металла или смеси оксидов путем обработки их гидроксидов микроволновым излучением в предлагаемом интервале частот и мощности.

Как показали исследования, проведенные авторами, в случае помещения гидроксида переходного металла (Ti, Zr, Hf, V, Nb, Та) в электромагнитное микроволновое поле он способен к саморазогреву до температур в диапазоне от 200°С до 400°С в течение ˜30 минут за счет поглощения микроволнового излучения. Причем следствием саморазогрева вещества является испарение сначала свободной воды и далее гидратированной влаги, входящей в его состав, что ведет к образованию оксида металла порошкообразного вида, полностью осушенного от влаги (см. Фиг.1). Затем температура постепенно снижается параллельно количеству удаленной гидратированной влаги и устанавливается постоянной в пределах 100°С, уже не изменяясь со временем. Этот факт объясняется тем, что оксиды нечувствительны к микроволновому излучению и поэтому с увеличением количества образовавшегося оксидного осадка температура сначала снижается, а затем остается постоянной. При этом получают порошок оксида с высоко развитой поверхностью, поскольку удаление влаги активно происходит до температуры ˜ 100°С. Таким образом, обработка гидроксида переходного металла, в частности титана, микроволновым излучением позволяет за счет удаления гидратной влаги получить оксид металла, в частности титана, кристаллической структуры анатаз с размером частиц от 5 мкм до наноразмерной величины (Фиг.2а, б).

Кроме того, предлагаемый способ позволяет получать смесь ультра-нанодисперсного порошка оксида металла или смеси оксидов переходных металлов - готовый материал (прекурсор) для получения оксикарбидов, карбидов, карбонитридов металлов или их сплавов. Для этого перед стадией нейтрализации растворы исходных солей металлов смешивают и проводят одновременное осаждение с постоянным перемешиванием для достижения однородного распределения гидроксидов металлов в осадке.

Следовательно, гидраты переходных металлов проявляют диэлектрические свойства и способность поглощения мощности микроволнового излучения. В результате происходит термолиз - испарение воды с получением оксидов переходных металлов ультра-нанодисперсного размера. Электромагнитное поле позволяет сохранять размер частиц без их спекания и роста.

Таким образом, в результате проведенных авторами исследований установлено, что осажденные из сульфатных растворов гидраты переходных металлов [Ме(ОН)х] обладают способностью саморазогрева до температур 200-400°С за счет поглощения микроволнового излучения.

Для традиционных термических способов нагрева характерна передача тепла в объем вещества с его поверхности посредством теплопроводности и конвекции. В случае воздействия микроволн нагрев происходит "изнутри" одновременно по всему объему вещества. При традиционном термическом нагреве даже при низкой температуре за счет теплоты испарения воды и высокой дисперсности происходит выделение тепла, которое приводит к некоторой агломерации частиц получаемых оксидов. При помещении гидратов металлов в микроволновое электромагнитное поле происходит распад гидратов аморфной структуры, формирование оксидов в форме кристаллизационных солей, при этом сохраняется размер частиц в первоначальной форме. Таким образом, использование обработки микроволнового излучения способствует отсутствию агломерации частиц, а также отсутствию спекания наружной части вещества.

Предлагаемый способ осуществляют следующим образом.

Берут раствор сульфата переходного металла или смесь растворов сульфатных соединений переходных металлов, добавляют гидроксид аммиака до рН среды 7,0-7,5; выдерживают в течение 1-2 часов до полного осаждения осадка. Затем удаляют примесные сульфаты промывкой нейтрализованной пульпы слабой кислотой или водой и отделяют полученный осадок. По данным рентгенофазового анализа полученный осадок является гидроксидом соответствующего переходного металла или смесью гидроксидов переходных металлов аморфной структуры. Далее осадок подвергают обработке микроволновым излучением на частоте 2450-3000 МГц и мощностью 600-700 Вт при температуре, обусловленной саморазогревом вещества. Предлагаемый способ был опробован на микроволновой муфельной печи производства ООО «НПО «Урал-Гефест». Полученный продукт подвергают рентгенофазовому анализу.

Предлагаемый способ получения оксидов переходных металлов иллюстрируется следующими примерами.

Пример 1.

Берут раствор оксисульфата титана (TiOSO4) с содержанием титана 19,3 г/л. Рассчитывают необходимый объем раствора для получения оксида титана (TiO2) в количестве 45 г. Для получения такого количества оксида титана потребуется 1,4 л раствора TiOSO4 с концентрацией титана 19,3 г/л. Осаждение проводят гидроксидом аммония (NH4OH) 12% при постоянно работающей мешалке до рН среды 7,0-7,5. Полученную суспензию отфильтровывают и промывают осадок сначала слабой серной кислотой 5%-ной и потом водой для выведения примесных сульфатных солей. В результате получают гидроксид титана Ti(OH)4 в количестве 44,34 г. Влажный гидратированный титан представляет собой белый осадок аморфной структуры, который помещают в кварцевой лодочке в муфель микроволновой печи, где проводят обработку осадка микроволновым излучением на частоте 2450 МГц и мощностью 600 Вт, при этом температура осадка в результате саморазогрева поднимается до 260°С в течение 22 минут, а затем постепенно в течение 20 минут понижается до 95°С и остается постоянной (Фиг.3). После того как температура не изменяется в течение 5 минут, продукт извлекают из печи. По данным рентгенофазового анализа получают кристаллический оксид титана TiO2 анатазной модификации, представляющий собой порошок белого цвета с размером частиц от 5 мкм до наноразмерной величины.

Пример 2.

Берут белый студенистый осадок гидроксида гафния Hf(OH)4 в количестве 50 г, полученный, как описано в примере 1, который имеет амфотерный характер, помещают в кварцевую лодочку и в муфель микроволновой печи. Производят обработку осадка микроволновым излучением на частоте 2450 МГц и мощностью 700 Вт, при этом температура осадка в результате саморазогрева поднимается до ˜400°С в течение 30 минут, а затем постепенно в течение 25 минут понижается до 300°С и остается постоянной. После того как температура не изменяется в течение 10 минут, продукт извлекают из печи. По данным рентгенофазового анализа получают оксид гафния моноклинной структуры с размером частиц от 5 мкм до наноразмерной величины.

Пример 3.

Берут смесь гидроксидов титана, циркония и гафния (Ti(OH)4, Zr(OH)4, Hf(OH)4), приготовленную как описано в примере 2, которая имеет ренгеноаморфный характер, помещают в кварцевую лодочку и в муфель микроволновой печи, производят обработку осадка микроволновым излучением на частоте 3000 МГц и мощностью 700 Вт, при этом температура осадка в результате саморазогрева поднимается до ˜550°С в течение 55 минут, а затем постепенно в течение 25 минут понижается до ˜350°С и остается постоянной. После того как температура не изменяется в течение 10 минут, продукт извлекают из печи. По данным рентгенофазового анализа получают смесь оксидов TiO2 (рутил), ZiO2 (монокл.), HfO2 (монокл.) с размером частиц от 5 мкм до наноразмерной величины.

Таким образом, предлагаемый способ позволяет сократить время процесса получения оксидов переходных металлов различной модификации и снизить энергетические затраты за счет использования микроволнового излучения.

Работа выполнена в рамках проектов РФФИ №04-03-32831-а и НШ-8380.2006.3.

Похожие патенты RU2337791C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 2008
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
RU2400428C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА КАРБИДА 2009
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
RU2418742C2
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ОКСИДОВ МЕТАЛЛОВ 2012
  • Селютин Артем Александрович
RU2538585C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА МЕТАЛЛИЧЕСКОГО КОБАЛЬТА 2016
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
RU2660549C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ТИТАНА 2014
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
  • Кедин Николай Александрович
RU2561614C1
Способ получения порошка карбида хрома 2017
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
RU2674526C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА СЛОЖНОГО КАРБИДА ВОЛЬФРАМА И ТИТАНА 2014
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
  • Кедин Николай Александрович
RU2562296C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ВАНАДИЯ 2015
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
RU2588512C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ВОЛЬФРАМА 2011
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
  • Кедин Николай Александрович
RU2495822C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА- И НАНОДИСПЕРСНЫХ ПОРОШКОВ ТУГОПЛАВКИХ КАРБИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ IV И V ПОДГРУПП 2018
  • Касимцев Анатолий Владимирович
  • Табачкова Наталия Юрьевна
  • Шуйцев Александр Владимирович
  • Юдин Сергей Николаевич
RU2680339C1

Иллюстрации к изобретению RU 2 337 791 C2

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Изобретение относится к области порошковой металлургии, в частности к способам получения ультра-нанодисперсных порошков оксидов переходных металлов или смеси оксидов переходных металлов. Способ включает нейтрализацию раствора сульфатного соединения переходного металла или раствора сульфатных соединений переходных металлов, отделение примесных сульфатов от полученного гидроксида металла или от полученных гидроксидов металлов и последующую обработку гидроксида металла или гидроксидов металлов. Нейтрализацию раствора осуществляют при рН в диапазоне 7,0-7,5, а последующую обработку осуществляют микроволновым излучением с частотой в интервале 2450-3000 МГц при мощности 600-700 Вт. Такая технология позволяет сократить время процесса получения порошков и снизить энергетические затраты. 3 ил.

Формула изобретения RU 2 337 791 C2

Способ получения ультра-нанодисперсного порошка оксида переходного металла или смеси оксидов переходных металлов, включающий нейтрализацию раствора сульфатного соединения переходного металла или раствора сульфатных соединений переходных металлов, отделение примесных сульфатов от полученного гидроксида металла или от полученных гидроксидов металлов и последующую обработку гидроксида металла или гидроксидов металлов, отличающийся тем, что нейтрализацию раствора осуществляют при рН в диапазоне 7,0-7,5, а последующую обработку осуществляют микроволновым излучением с частотой в интервале 2450-3000 МГц при мощности 600-700 Вт.

Документы, цитированные в отчете о поиске Патент 2008 года RU2337791C2

US 6919029 А, 19.06.2005
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА 2000
  • Новиков А.В.
  • Новиков С.А.
  • Гуреев А.К.
RU2170647C1
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА 1992
  • Капустин Анатолий Иванович
  • Волков Константин Владимирович
  • Волкогон Григорий Михайлович
  • Золотухин Юрий Петрович
  • Моргун Галина Николаевна
RU2030972C1
УСТАНОВКА И СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ В ПЛАЗМЕ СВЧ РАЗРЯДА 2003
  • Балихин И.Л.
  • Берестенко В.И.
  • Домашнев И.А.
  • Куркин Е.Н.
  • Троицкий В.Н.
RU2252817C1
СПОСОБ ПРИГОТОВЛЕНИЯ ПОРОШКОВ ТВЕРДЫХ МАТЕРИАЛОВ 1995
  • Мухаммед Мамоун
  • Вальберг Сверкер
  • Гренте Ингмар
RU2130822C1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 337 791 C2

Авторы

Швейкин Геннадий Петрович

Николаенко Ирина Владимировна

Даты

2008-11-10Публикация

2006-10-17Подача