Изобретение относится к области магнезиальных вяжущих веществ и может быть использовано при производстве строительных материалов различного назначения, в том числе бетонов с органическими наполнителями.
Известны магнезиальные вяжущие (Ю.М.Бутт и др. Химическая технология вяжущих материалов. Высшая школа. М., 1980, стр.54...59), представляющие собой композиции из порошка каустического магнезита MgO и водных растворов хлоридов или сульфатов магния.
Способ получения известного вяжущего включает операцию смешивания каустического магнезита с водным раствором сульфатов и хлоридов магния.
Недостатком известных композиций является то, что готовить магнезиальное вяжущее возможно только на месте его применения. Транспортировать известное вяжущее на значительные расстояния и хранить его возможно только при разделении компонентов: каустический порошок в одном месте, раствор солей в другом, что представляет технологические неудобства, ограничивающие сферу применения магнезиального вяжущего. Кроме этого, к недостаткам относится дефицит растворов солей магния, пригодных для получения магнезиального вяжущего.
Известно другое «Вяжущее» (А.С. SU №1685066, С04В 9/00), состоящее из: каустического магнезита 23...30%, основного доменного граншлака 0,1...36,4%, раствора хлорида магния 39,4...40%, ферромарганцевой пыли 1,2...30%.
Способ получения такого вяжущего включает операции: смешивание каустического магнезита с доменным граншлаком и ферромарганцевой пылью до однородного состояния; параллельное приготовление раствора «бишофита» путем растворения соли в воде с получением раствора плотностью 1,3 г/см3; смешивание сухих компонентов с раствором хлорида магния. Полученную литую смесь насосами подают к месту применения.
Недостатком известного «Вяжущего» является невозможность транспортирования на дальние расстояния и хранение более 2-х часов готового к употреблению вяжущего, что ограничивает возможности его применения и снижает коммерческую ценность. К тому же «бишофит», применяемый в известном вяжущем - дефицитен и дорог.
Известна композиция для изготовления строительных материалов (Патент RU №2079465, С04В 28/30, С04В 111/20), состоящая из магнезиального вяжущего (каустический магнезит) 24...60%, сульфата магния (эпсомит) 14...32%, наполнителя 5...34%, ПВА 0,3...0,57%, кремнийорганического гидрофобизатора 0,8...1,0%, водорастворимого сульфата, и/или хлорида железа, и/или алюминия 3...5%, вода остальное.
Способ получения известной композиции включает операции смешивания сухих компонентов с последующим добавлением смеси в жидкость затворения.
Такая композиция может в сухом виде транспортироваться на любые расстояния, т.к. используется только после затворения водой.
Недостатком известной композиции является использование сухого MgSO4·7Н2О (эпсомит) - природного вещества, распространенного только в местах испарения морской воды, что определяет его дефицитность. Сказанное можно подтвердить практическим примером. Так, в России единственным центром производства каустического магнезита является Южный Урал (г.Сатка), а ближайший источник эпсомита - Казахстан в районе Каспийского моря. Доставлять эпсомит за 2000 км и изготавливать «сухое» вяжущее - явно нерентабельно.
Известен также способ получения магнезиального цемента, включающий получение сульфата магния MgSO4·7H2O путем растворения каустического магнезита в серной кислоте и смешивания его с каустическим магнезитом (Ю.М.Бутт и др. Технология вяжущих веществ. Высшая школа. М., 1965, стр.80...86). Однако недостатком известного способа является невозможность получения сухой композиции магнезиального цемента с неограниченными сроками хранения и способностью транспортироваться на любые расстояния без ухудшения качества.
Наиболее близким техническим решением, принятым за прототип, является композиция для изготовления строительных материалов (Патент RU 2079465) и способ получения магнезиального цемента, включающий получение сульфата магния MgSO4·7Н2О путем растворения каустического магнезита в серной кислоте и смешивания его с каустическим магнезитом (Ю.М.Бутт и др. Технология вяжущих веществ. Высшая школа. М., 1965, стр.80...86).
Цель изобретения - создание магнезиального цемента, представляющего сухую смесь компонентов, которую возможно хранить неограниченно долго, транспортировать на любые расстояния, готовность к употреблению которой возникает в момент затворения обычной водой.
Цель достигается тем, что в способе получения магнезиального цемента, включающем операции приготовления синтетического сульфата магния MgSO4·7H2O с использованием серной кислоты и смешивания полученного сульфата магния MgSO4·7Н2О с каустическим магнезитом, указанное приготовление сульфата магния осуществляют путем химического взаимодействия водной суспензии тонкоизмельченного магнезита MgCO3 или каустического магнезита MgO, приготовленной из расчета твердое:жидкое = 1:1, с серной кислотой плотностью не ниже 1,6 г/см3 до полной нейтрализации жидкой фазы суспензии до рН-7 с последующей выпаркой и кристаллизацией MgSO4·7H2O, а указанное смешивание осуществляется при следующем соотношении компонентов, мас.%:
Цель достигается также тем, что магнезиальный цемент получен указанным способом.
Практическую реализацию изобретения и обоснование заявленных пределов покажем на примерах.
Пример 1.
Брали магнезит Верхотуровского месторождения Красноярского края и подвергали измельчению. Тонкость измельчения характеризовалась полным прохождением через сито 0,08 мм.
Готовили суспензию из магнезитового порошка и воды из расчета тв.:жид.=1:1.
Далее к суспензии при ее непрерывном перемешивании подливали серную кислоту плотностью 1,6 г/см3 (содержание H2SO4 1120 г/л) до полной нейтрализации жидкой фазы суспензии. Плотность серной кислоты выбрана из практических соображений. При плотности, меньшей 1,6 г/см3, эффективность реакции резко падает, т.к. зерна MgCO3 не успевают полностью прореагировать в связи с обволакиванием коллоидной массой новообразований. При плотности 1,6 г/см3 и более реакция протекает энергично, практически со 100%-ным выходом.
Между твердыми частицами суспензии (MgCO3) и серной кислотой протекает реакция, описываемая стехиометрическим соотношением
MgCO3+Н2SO4+nH2О→MgSO4+СО2+(n+1)Н2О.
Согласно реакции на 1 кг MgCO3 требуется 1,17 кг H2SO4 или 1,04 л серной кислоты с плотностью 1,6 г/см3. При этом образуется 1,43 кг сульфата магния и 0,84 кг СО2, который улетучивается. После завершения реакции, выпаривания и кристаллизации образуется семиводный кристаллогидрат MgSO4·7Н2О в количестве 2,93 кг.
Высушенный кристаллогидрат смешивается с каустическим магнезитом таким образом, чтобы его доля в магнезиальном цементе составляла 28...34%.
Готовый магнезиальный цемент затаривается в мешки и рассылается потребителям.
На объекте использования магнезиального цемента к нему добавляют наполнители, затворяют водой в количестве, обеспечивающем нормальную густоту смеси, и формуют изделия.
Для определения марочной прочности магнезиального цемента готовили образцы 5-ти составов, из них три состава внутри заявленных пределов, два состава вне этих пределов. Образцы готовили из теста нормальной густоты. Размер образцов-кубов 4×4×4 см. Предел прочности при сжатии определяли через 1, 3, 7, 28 суток и 3 мес.нормального твердения. Перед испытанием образцы сушили до постоянной массы при температуре 100...105°С. В эксперименте использовали каустический магнезит марки ПМК-75 (ГОСТ 1216-87)
В табл.1 представлены результаты испытаний.
Из представленных в таблице 1 результатов следует, что марочная прочность магнезиального цемента с использованием каустического магнезита марки ПМК-75 наступает через 7 суток твердения и составляет 60 МПа. Дальнейшее твердение магнезиального цемента в заявленных пределах состава ведет к незначительному приросту механической прочности от 1 до 9% в трехмесячном возрасте.
Иная картина наблюдается при твердении магнезиального цемента за пределами заявленных составов. Так, если доля MgSO4·7Н2О в цементе больше предельного значения, то после достижения марочной прочности к 7 сут в дальнейшем камень теряет до 10% прочности, что объясняется усилением деформационных процессов «усыхания-набухания» при колебаниях влажности окружающей среды в связи с большим содержанием в камне кристаллогидратов.
Если же доля MgSO4·7Н2О в цементе меньше нижнего заявленного предела, то камень при твердении не набирает марочной прочности.
Таким образом, оптимальное содержание MgSO4·7Н2О в магнезиальном цементе лежит в пределах 28...34%.
Дальнейший анализ данных таблицы 1 показывает, что изменение доли MgSO4·7Н2О в заявленных пределах не ведет к изменению марочной прочности, но заметно влияет на скорость набора марочной прочности.
На размер марочной прочности оказывает существенное влияние марка каустического магнезита, что иллюстрируется данными таблицы 2, в которой представлены результаты испытаний образцов магнезиального цемента, приготовленного на каустическом магнезите марки ПМК-80.
Пример 2.
Получение сульфата магния из каустического магнезита.
Брали каустический магнезит MgO, полученный обжигом Верхотуровского магнезита MgCO3. Марка каустического магнезита ПМК-80, т.е. количество MgOАКТ. не менее 80%.
После измельчения (100%-ный проход через сито 0,08 мм) и приготовления суспензии (тв. : жидк.=1:1) проводили реакцию с серной кислотой с плотностью 1,6 г/см3. Взаимодействие описывается следующим стехиометрическим уравнением:
MgO+H2SO4+nH2О→MgSO4+(n+1)Н2О.
На 1 кг MgO требуется 2,45 кг H2SO4 или 2,19 л серной кислоты плотностью 1,6 г/см3. При этом образуется 3 кг MgSO4. Количество кристаллогидрата MgSO4·7H2O после выпарки и кристаллизации - 6,15 кг. Количество полученного сульфата магния этим способом идентично первому примеру, поэтому на количестве магнезиального цемента не отражается, из чего (MgCO3 или MgO) получен синтетический твердый MgSO4·7Н2О.
название | год | авторы | номер документа |
---|---|---|---|
МАГНЕЗИАЛЬНОЕ ВЯЖУЩЕЕ | 2009 |
|
RU2404144C1 |
МАГНЕЗИАЛЬНОЕ ВЯЖУЩЕЕ | 2010 |
|
RU2428390C1 |
МАГНЕЗИАЛЬНОЕ ВЯЖУЩЕЕ | 2018 |
|
RU2681746C1 |
МАГНЕЗИАЛЬНОЕ ВЯЖУЩЕЕ | 1991 |
|
RU2023705C1 |
РЕМОНТНО-ИЗОЛЯЦИОННЫЙ ТАМПОНАЖНЫЙ СОСТАВ | 2016 |
|
RU2630824C1 |
МАГНЕЗИАЛЬНЫЙ ТАМПОНАЖНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2542028C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И СПОСОБ ЕГО ПРИМЕНЕНИЯ | 2011 |
|
RU2483375C2 |
СПОСОБ ПОЛУЧЕНИЯ МАГНЕЗИАЛЬНОГО ВЯЖУЩЕГО И УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2011 |
|
RU2469004C1 |
МОДИФИЦИРОВАННЫЙ КОМПОНЕНТ МАГНЕЗИАЛЬНОГО ЦЕМЕНТА | 2005 |
|
RU2351556C2 |
Наномодифицированный магнезиальный цемент | 2019 |
|
RU2720463C1 |
Изобретение относится к области магнезиальных вяжущих и может быть использовано при производстве строительных материалов, в том числе бетонов с органическими наполнителями. Для получения магнезиального цемента готовят синтетический сульфат магния MgSO4·7H2O химическим взаимодействием водной суспензии тонкоизмельченного магнезита MgCO3 или каустического магнезита MgO, приготовленной из расчета твердое:жидкое = 1:1, с серной кислотой плотностью не ниже 1,6 г/см3 до полной нейтрализации жидкой фазы суспензии до рН-7 с последующей выпаркой и кристаллизацией MgSO4·7H2O. Полученный сульфат магния смешивают с каустическим магнезитом при следующем соотношении компонентов, мас.%: каустический магнезит - 66-72, указанный сульфат магния - 28-34. Технический результат - создание магнезиального цемента, представляющего сухую смесь компонентов, которую возможно хранить неограниченно долго, транспортировать на любые расстояния, готовность к употреблению которой возникает сразу после затворения обычной водой. 2 н.п. ф-лы, 2 табл.
БУТТ Ю.М | |||
и др | |||
Технология вяжущих веществ | |||
- М.: Высшая школа, 1965, с.80-86 | |||
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 1994 |
|
RU2079465C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА МАГНИЯ | 1994 |
|
RU2078041C1 |
Способ получения водостойкого магнезиального цемента | 1976 |
|
SU577185A1 |
Способ получения семиводного суль-фАТА МАгНия | 1979 |
|
SU827395A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
ВОЛЖЕНСКИЙ А.В | |||
Минеральные вяжущие вещества | |||
- М.: Стройиздат, 1986, с.121 | |||
Большая советская энциклопедия | |||
- М.: Советская энциклопедия, 1978, т.30, с.226. |
Авторы
Даты
2009-01-20—Публикация
2006-10-30—Подача