Изобретение относится к сельскому хозяйству и может быть использовано в кормопроизводстве для консервирования зеленой массы кормовых культур при силосовании.
Цель изобретения - повышение сохранности питательных веществ и качества силоса за счет нового консерванта - алюмосиликата, скармливание консервированного силоса молодняку крупного рогатого скота увеличивает его продуктивность.
Для консервирования зеленой массы кукурузы использовали алюмосиликат - бентонит Южноскворцовского месторождения Оренбургской области, который вносили в растительную массу в расчете 0,75-1,75% на тонну корма.
Известны способы консервирования зеленой массы кукурузы, люцерны элементарной серой гипохлоритом натрия, бишофитом [1, 2, 3] и другими минеральными соединениями [4]. Недостатком этих способов является более высокая стоимость консервирующих средств в современных условиях рыночной экономики, когда необходимо изыскание новых, экологически безопасных, недорогих и удобных при применении. Очень важно их безвредность для обслуживающего персонала и животных, доступность для производства и оптимальное сохранение основных питательных веществ в заготовленном корме, значительное повышение его качества.
Наиболее близким к предложенному способу консервирования кукурузы является применение биоконсерванта литосил в смеси с цеолитом или сапонитом в соотношении 0,005-0,01:2,5-5 кг на тонну сырья [2]. Однако этот способ трудоемкий в техническом отношении и небезопасен для здоровья животных, когда используется гликозид-сапонин. При разработке способа консервирования зеленой массы кормов при силосовании использовали алюмосиликаты Южноскворцовского месторождения, которые являются уникальными по своим запасам (50 млн т) и по химическому составу. Они добываются экологически безопасным - открытым, наиболее дешевым способом и их химсостав, по данным комплексно-аналитической лаборатории ГНУ ВНИИМС, включает следующие оксиды и элементы: 62,6% SiO2; 16,3% Al2О3; 2,17% Fe2O3; 1,5-2,0% CaO; 1,6-1,7% MgO; 1,32% К2О; 0,6-0,7% Na2O; 0,37 SO3 и более 25 различных элементов, в том числе Со - 11 мг/кг; Мо - 0,43 мг/кг; Cu - 80 мг/кг; Zn - 73 мг/кг; Mn - 390 мг/кг; Pb - 0,8 мг/кг; As - 0,11 мг/кг; Se - 10 мг/кг. Вода в составе алюмосиликатов может быть как в виде молекул Н2О (кристаллизационная), так и в виде ионов ОН- и Н+ (конституционная). Используемый алюмосиликат - бентонит отличается от цеолитов своим сложным строением. Алюмосиликаты обладают высокой адсорбционной, ионно-обменной и каталитической активностью. Они доступны для использования в качестве консерванта каждому сельскохозяйственному предприятию, нетоксичны, не являются горючими, взрывоопасными веществами, легко транспортируются на любых транспортных средствах и хранятся в крафтмешках в сухих помещениях, не теряя своих полезных свойств в течение длительного времени.
Отметим, что после скашивания кормовых культур в них нарушается равновесие между синтезом и распадом протеина и углеводов в пользу последних. Гидролиз сырого протеина и углеводов растений до конечных продуктов (аммиак, СО2 и вода) происходит под действием соответствующих ферментов, снижая питательность и качество заготавливаемого корма. Кроме того, закладываемая зеленая масса является хорошей питательной средой для различной микрофлоры (бактерии, грибки, плесени и др.), дополнительно разлагающей питательные вещества и витамины.
Для лучшего сохранения питательных веществ заготавливаемого корма необходимо создать условия, снижающие активность ферментов или разрушающие энзимы растительных клеток и микроорганизмов. Консервирование корма достигается также быстрым его подкислением, способствующим смещению рН до 3,8-4,2 в анаэробных условиях, при котором микробиологические и биохимические процессы подавляются за исключением некоторых кислотоустойчивых молочнокислых бактерий. При этом также происходят необратимые превращения белков и ферментов в денатурированное состояние. При использовании алюмосиликатов в качестве консервантов рН силосуемой массы достигает требуемой величины довольно быстро. Снижается не только распад сырого протеина, сахара, крахмала, но и процессы анаэробного дыхания и маслянокислого брожения.
Консервирование зеленой массы кукурузы проводили в два этапа. На первом этапе проводили лабораторный опыт по закладке силоса из зеленой массы кукурузы, убранной в фазе молочно-восковой спелости зерна, в трехлитровых банках.
Пример 1. Измельченную зеленую массу кукурузы закладывали на силос без консерванта.
Пример 2-5. В измельченную зеленую массу кукурузы добавляли в качестве консерванта алюмосиликат Южноскворцовского месторождения из расчета 0,75-1,75% по массе.
Пример 6. В измельченную зеленую массу кукурузы добавляли элементарную серу - 3 кг/т, то есть известное консервирующее средство.
Химический состав приготовленных силосов был изучен после 15- и 50-дневного их хранения. По органолептическим показателям (по запаху, структуре частиц корма) силоса не имели различий, а по результатам химического анализа лучшее качество было при добавлении алюмосиликата из расчета 1,5-1,75% на тонну зеленой массы. Использование указанных доз приводит к увеличению протеина, сахаров и БЭВ - от 1,3-12,2%, молочной кислоты на 5,8-8,1% и уксусной кислоты - на 5,6-8,9%, лучшей сохранности сухого вещества по сравнению с силосом без консерванта. При этом питательность изучаемых силосов составляла соответственно 0,28; 0,29; 0,29; 0,28 ЭКЕ (табл.1).
В разложении жира принимают участие ферменты липазы и липопротеинлипаза, которые ускоряют освобождение глицерина и жирных кислот. Распад липидов активизируется ионами Са++, т.к. они положительно влияют на эти ферменты. В частичном разложении жира могут участвовать плесневые грибы. Кроме этого Са устраняет вредные действие других катионов (Н, K+, Na+, Mn++, AI+++). Антогонизм проявляется например, при увеличении концентрации водорода в растворе. Перечисленные и др. уже ионы являются, как бы, организаторами центров ряда ферментов, они входят в состав их простатических групп, а ионы Fe, Zn, Mn, AI, Cr, Ni и другие уже участвуют в синтезе нуклеиновых кислот, входят в состав рибосом. Последние обеспечивают в клетках синтез белка. Белок рибосом отличается высоким содержанием азота. Все это указывает на положительную роль минеральных элементов алюмосиликатов в повышении протеина в процессе силосования. При этом следует отметить, что анаэробные бактерии в силосе (Clostridium Pasterianum) и сульфатредуцирующие бактерии используют энергию, получаемую при окислении моносахаридов для восстановления растворимых соединений азота и в дальнейшем синтеза белка по реакциям:
1) N2+2H→HN=NH
2) 2NH+2H2O=2NH2OH, который принимает участие в синтезе аминокислот, а промежуточным продуктом является NH3. Продукты распада углеводов (сахара, крахмал) пировиноградная, щавелевоуксная, 2-кетоглутаровая кислоты являются исходными соединениями для синтеза аминокислот и других мономеров, используемых для синтеза белка. Реакции активизируются ионами Mg2+ или Mn2+ или Со2+, причем Со действует сильнее, чем Mg2+. Одновременно происходит увеличение распада углеводов (сахаров, крахмал) в анаэробных условиях, одним из продуктов является уксусной ангидрид, при окислении которого образуется уксусная кислота. Часть уксусного ангидрида взаимодействует с клетчаткой, в результате образуется триацетилклетчатка и уксусная кислота.
Повышение содержания питательных веществ в опытных образцах силосов достигается за счет более быстрого смещения рН до 4,2, что способствует снижению гидролиза белковых веществ и углеводов.
Консервирующий эффект применяемых алюмосиликатов может быть достигнут:
1. Окислением серы и ее соединений, содержащихся в алюмосиликатах, тионовыми бактериями по схеме с образованием кислой среды:
2S+3O2+2Н2О→2H2SO4;
SNa2S2O3+Н2O+4O2→2Na2SO4+H2SO4+4S;
2Na2S2O3+1/2 O2+Н2O→Na2S4O6+NaOH.
Тетратионаты могут в дальнейшем подвергаться окислению в серную кислоту: Na2S4O6+5O2+6Н+→Na2SO4+3H2SO4.
Тионовые бактерии, которые находятся на поверхности растений, окисляют серу и ее соединения с образованием сульфатов, тетратионатов. Последние в результате дальнейшего окисления дают серную кислоту, которая является хорошим консервантом.
Образующая H2SO4 может вступать в реакцию с нерастворимой окисью Al2О3 с содержанием ионов SO4 2-, хорошо усвояемыми организмом:
Al2O3+3H2SO4→Al2(SO4)3+3Н2O или 2Al3++3SO4 2-.
Тионовые бактерии для синтеза углеводов используют CO2 и бикарбонаты. Углеводы, органические кислоты, спирты подвергаются дегидрогенизации и водород переносится на сульфаты и тиосульфата.
2. Соединения фосфора, входящие в состав алюмосиликатов, не доступны растениям. Однако многие микроорганизмы, находящиеся в силосуемой массе, могут их переводить в растворимое состояние. К ним относятся бактерии, актиномицеты, грибы и другие, образовавшиеся при дыхании растительных клеток и гидролизе органического вещества с выделением CO2 с последующим переходом в угольную кислоту (Н2СО3), которая быстро растворяет нерастворимый: Са3(PO4)2+2CO2+H2O→2CaHPO4+Са(НСО3)2 в растворимые формы фосфатов с кислыми консервирующими свойствами.
3. Чистый каолин (Al2О3·2SiO2·2Н2O) - составная часть алюмосиликатов, в результате биохимического процесса при силосовании его кремний переходит в SiO2·Н2O, а Al в Al(ОН)3, который имеет амфотерный характер, не растворим в воде, но легко растворимый в органических кислотах, образует соль уксусной кислоты [Al(СН3СОО)3], полученную из Al(ОН)3 и СН3СООН.
4. В соке силоса имеются ионы Н+ и возможна реакция по схеме:
Al3++6H+=2Al3++2Н2 и 2Al+8ОН-=2Al(ОН)4.
В водной среде ионы Al3+ непосредственно окружены 6 молекулами воды. Такой гидротированный ион несколько диссоцирован по схеме:
[Al(ОН)2]6↔[Al(ОН2)5OH]+Н константа его диссоциации равна 1·10-5, то есть он является слабой кислотой, близкой по силе к уксусной.
В природных алюмосиликатах, содержащих AI3+, Fe3+, Са2+, Mg2+, Fe2+, Mn2+, Na+, К+ и другие, могут быть добавочные (не связанные с Si4+) анионы: О2-, ОН-, SO4 2-, СО3 2-, Cl-, F-.
5. Водные растворы силикатов щелочных металлов вследствие гидролиза имеют щелочную реакцию, например: Na2SiO3+H2O→Na2Si2O3+2NaOH; в кислой среде - SiO3+Н2O→HSiO3+ОН-;
Na2SiO3+2HCl→NaCl+H2SiO3 (кремневая кислота обладает большой адсорбционной способностью и называется силикагель и относится к слабым электролитам).
Гидратные формы SiO2 представляют слабые, очень мало растворимые кислоты - ортокремневая (SiO2·2Н2O), метакремневая (SiO2·Н2O) и др.
На втором этапе эксперимента силос кукурузный закладывали в хозяйственных условиях одновременно в двух траншеях по 50 т: в первой - по традиционной технологии и во второй - в зеленую массу добавляли алюмосиликат в дозе 1,50% от массы. Кормовое достоинство заготовленных силосов испытано в научно-хозяйственном и физиологическом опытах на двух группах бычков казахской белоголовой породы, выращиваемых на мясо.
Вместе с тем, доза алюмосиликатов при консервировании зеленой массы кукурузы 1,50% обуславливает лучшую обеспеченность рациона подопытных животных при выращивании на мясо основными питательными веществами, каротином, макро- и микроэлементами, что подтверждается экспериментальными данными.
Научно-хозяйственный опыт продолжался 230 дней, в том числе основной период опыта - 200 суток. Бычки контрольной группы получали в составе основного рациона (ОР) кукурузный силос без консерванта, а опытной - кукурузный силос, обогащенный алюмосиликатом в дозе 1,50%. Скармливание силоса, консервированного с использованием алюмосиликатов, положительно повлияло на прирост живой массы, абсолютных и среднесуточных привесов подопытных бычков (табл.2).
Данные таблицы 2 свидетельствуют, что у животных, получавших силос с консервантом, среднесуточный прирост оказался выше на 6,80%, а абсолютный - соответственно на 6,87% по сравнению с контролем. За период научно-хозяйственного опыта на единицу прироста бычков контрольной группы израсходовано 8,77 ЭКЕ и переваримого протеина 825 г, а опытной группы - соответственно 8,73 и 793 г, или ниже 3,88%.
Результаты физиологических исследований свидетельствуют о том, что бычки опытной группы имели более высокие показатели переваримости кормов, обмена энергии, азота и минеральных веществ рационов (табл.3-5).
Клинические и гематологические показатели бычков сравниваемых групп находились в пределах физиологических норм.
Таким образом, консервирование зеленой массы злаковых культур алюмосиликатами Южноскворцовского месторождения Оренбургской области в дозе 1,50% на тонну обеспечивает более высокую сохранность питательных веществ и позволяет получить силос значительно лучшего качества, а скармливание такого корма увеличивает продуктивность бычков при выращивании на мясо и улучшает качество говядины.
Источники информации
1. А.С. №1099937 от 11.03.1984 г.
2. А.С. №1658436 от 27.07.1989 г.
3. Патент RU №2195840 C2 от 12.07.2000 г.
4. Евстратов А.И. и др. Влияние минеральных добавок при заготовке объемистых кормов // Перспективные направления в производстве и использовании комбикормов и балансирующих добавок. Материалы III научно-практической конференции. Дубровицы. - 2003. - С.103-105.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНСЕРВИРОВАНИЯ ЗЕЛЕНЫХ КОРМОВ | 2013 |
|
RU2550043C2 |
СПОСОБ КОНСЕРВИРОВАНИЯ ЗЕЛЕНЫХ КОРМОВ | 2000 |
|
RU2195840C2 |
ПРИМЕНЕНИЕ ТВЕРДОЙ КАРБАМИДОФОРМАЛЬДЕГИДНОЙ СМОЛЫ В КАЧЕСТВЕ КОНСЕРВАНТА И ОБОГАТИТЕЛЯ АЗОТОМ ЗЕЛЕНЫХ РАСТЕНИЙ ПРИ ИХ СИЛОСОВАНИИ | 2006 |
|
RU2355528C2 |
СПОСОБ СИЛОСОВАНИЯ ЗЕЛЕНОЙ МАССЫ КОРМОВЫХ КУЛЬТУР | 2008 |
|
RU2388322C2 |
СПОСОБ СИЛОСОВАНИЯ ВЫСОКОВЛАЖНОЙ КУКУРУЗЫ | 2016 |
|
RU2640361C1 |
СПОСОБ КОНСЕРВИРОВАНИЯ ЗЕЛЕНЫХ КОРМОВ | 2000 |
|
RU2167540C1 |
СПОСОБ СИЛОСОВАНИЯ ЗЕЛЕНОЙ МАССЫ КОРМОВЫХ КУЛЬТУР | 2010 |
|
RU2477966C2 |
СПОСОБ СИЛОСОВАНИЯ ЗЕЛЕНОЙ МАССЫ КУКУРУЗЫ | 2005 |
|
RU2297777C2 |
Консервант для силосования кормов | 1987 |
|
SU1449095A1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КОРМОВ | 2013 |
|
RU2529907C1 |
Изобретение относится к области кормопроизводства. Способ консервирования зеленых кормов включает внесение консерванта в силосуемую массу, при том, что в качестве зеленого корма используют кукурузу, а в качестве консерванта - алюмосиликат - бентонит Южноскворцовского месторождения Оренбургской области, который вносят из расчета 15,0-17,5 кг на тонну корма, химический состав которого включает следующие оксиды и элементы, %: 62,6 SiO2; 16,3 Al2О3; 2,17 Fe2О3; 1,5-2,0 CaO; 1,6-1,7 MgO; 1,32 K2O; 0,6-0,7 Na2O; 0,37 SO3 и более 25 различных элементов, в том числе, мг/кг: Со - 11; Мо - 0,43; Cu - 80; Zn - 73; Mn - 390; Pb - 0,8; As - 0,11; Se - 10. Обеспечивается высокая сохранность питательных веществ, что позволяет получать силос высокого качества, а включение его в рационы бычков, выращиваемых на мясо, обуславливает увеличение продуктивности бычков и улучшает качество говядины. 5 табл.
Способ консервирования зеленых кормов, включающий внесение консерванта в силосуемую массу, отличающийся тем, что в качестве зеленого корма используют кукурузу, а в качестве консерванта - алюмосиликат - бентонит Южноскворцовского месторождения Оренбургской области, который вносят из расчета 15,0-17,5 кг на тонну корма, химический состав которого включает следующие оксиды и элементы, %: 62,6 SiO2; 16,3 Al2O3; 2,17 Fe2O3; 1,5-2,0 CaO; 1,6-1,7 MgO; 1,32 K2O; 0,6-0,7 Na2O; 0,37 SO3 и более 25 различных элементов, в том числе, мг/кг: Со 11; Мо 0,43; Cu 80; Zn 73; Mn 390; Pb 0,8; As 0,11; Se 10.
СПОСОБ КОНСЕРВИРОВАНИЯ ЗЕЛЕНЫХ КОРМОВ | 2000 |
|
RU2195840C2 |
СПОСОБ СИЛОСОВАНИЯ ВЫСОКОВЛАЖНОГО РАСТИТЕЛЬНОГО СЫРЬЯ | 1990 |
|
RU2094001C1 |
СПОСОБ СИЛОСОВАНИЯ ВЫСОКОВЛАЖНОГО РАСТИТЕЛЬНОГО СЫРЬЯ | 1996 |
|
RU2119288C1 |
СПОСОБ ПОДГОТОВКИ СИЛОСА | 2003 |
|
RU2264127C2 |
Политехнический словарь | |||
Гл | |||
ред | |||
ИШЛИНСКИЙ А.Ю | |||
- М.: Советская энциклопедия, 1989, с.25 | |||
RU 2053688 C1, 10.02.1996. |
Авторы
Даты
2009-02-27—Публикация
2006-10-26—Подача