НАШЛЕМНАЯ РАЗВЕДЫВАТЕЛЬНАЯ СИСТЕМА ПАССИВНОГО ДАЛЬНОМЕТРИРОВАНИЯ ОБЪЕКТОВ Российский патент 2009 года по МПК F41G7/00 G01C3/00 

Описание патента на изобретение RU2349864C2

Анализ современных локальных и контртеррористических операций указывает на необходимость совершенствования разведывательной аппаратуры, в том числе и артиллерийских подразделений.

В настоящее время для ведения разведки в артиллерийских подразделениях широко используются лазерный прибор разведки ЛПР-1 (квантовый дальномер 1Д13) и перископическая артиллерийская буссоль ПАБ-2. Данные приборы являются основными в отделениях разведки буксируемых подразделений и артиллерийских разведывательных группах или используются в качестве приборов выносного (передового, бокового) наблюдательного пункта, выделяемого из состава подвижного разведывательного пункта самоходных артиллерийских подразделений.

Боевые действия в городских и горных условиях выявили ряд недостатков лазерного прибора разведки ЛПР-1 (квантового дальномера 1Д13):

- активный режим работы демаскирует местоположения прибора, так как противник имеет системы обнаружения и подавления оптико-электронных приборов;

- максимальная дальность действия прибора (до 20000 м) в условиях города (гор) используется не всегда;

- наличие треноги ограничивает передвижение артиллерийских разведчиков и увеличивает время подготовки прибора к работе и др.

Анализ условий ведения артиллерийской разведки по картам показывает, что дальность прямой видимости для холмистой и для среднепересеченной местности в среднем составляет 6...7 и 3...5 км соответственно. В горных и городских условиях эта дальность значительно ниже.

Исходя из данных условий, разрабатываемая малогабаритная разведывательная аппаратура должна позволять определять дальность:

- до 6..7 км в видимом диапазоне;

- до 5 км в ИК-диапазоне;

- до 3 км в УФ-диапазоне.

В настоящее время существует большое количество малогабаритных приемников, работающих в оптическом диапазоне электромагнитных волн, которые можно использовать для определения дальности. Наиболее эффективно использовать комбинированные приборы зарядовой связи (ПЗС). Это позволит регистрировать излучение от цели и фона сразу же в нескольких диапазонах электромагнитных волн, а также учесть демаскирующие параметры цели в различных участка спектра и в различных условиях распространения излучения (метеорологические условия прохождения сигнала, пыледымовые помехи и др.).

Для использования пассивной малогабаритной аппаратуры может быть выбран стереоскопический (базовый) метод измерения дальности.

Зрение двумя глазами (стереоскопическое зрение) позволяет человеку измерять расстояние пассивным способом на основе стереоскопического базового метода. Этот же способ положен в основу работы оптических дальномеров, например, состоящих на вооружении в качестве дублирующих (выносных и др.). Это артиллерийские стереоскопические дальномеры ДСП-30 (база 0,3 м), ДС-0,9, ДС-1, ДС-2 (база 0,9, 1,0 и 2,0 м соответственно) и зенитные дальномеры типа ЗДН и др. База приборов значительно увеличена по сравнению с базой глаз.

Сущность измерения расстояния с помощью оптических дальномеров лежит в решении измерительного треугольника Δ 123 (фиг.1). На фиг.1 приведен стереоскопический базовый метод измерения дальности. Дальность D до объекта 1 определяется по величине параллактического угла γ и по величине базы прибора Б, определяемой положением приемных зеркал 2 и 3

В приборе угол γ определяется исходя из величины линейного параллакса Р, измеренного по прибору как

где f - фокусное расстояние объективов прибора.

Значения Б и f являются постоянными величинами для прибора. По этому достаточно измерить Р, чтобы вычислить дальность до объекта D.

В работе предложен стереоскопический базовый метод измерения дальности. Данный способ пассивен, то есть не демаскирует процесс измерения, однако данный метод требует использования баз более 0,3 м. Чем больше база, тем выше точность изменения дальности.

Использование ПЗС позволяет решать задачи пространственной и временной селекции. Плоская матрица способна регистрировать перемещение объекта в двух плоскостях - «вправо-влево» и «вверх-вниз». Однако очевидно, что использование плоских линеек и матриц фотоприемников, плоскость которых перпендикулярна линии наблюдения, не позволит измерить дальность до объекта (цели).

Для измерения дальности пассивным способом на основе стереоскопического базового метода при наблюдении местности и целей может быть использована линейка или мозаичный приемник на основе приборов с зарядовой связью (ПЗС), приемные площадки которых наклонены под углом 90° к линии наблюдения.

Такой наклон приемников вызывает новое качество - получение трехмерной матрицы ПЗС. На фиг.2 показан пассивный базовый метод измерения дальности двумя датчиками ПЗС для двухосной системы расположения приемников.

Дальнометрирование с использованием мозаики когерентных фотодетекторов ПЗС позволяет также использовать сформированные голограммы, восстанавливающие трехмерное изображение объектов, затем сравнивать с эталоном, что снижает влияние помех (средств маскировки противника).

В качестве фотоприемного устройства (ФПУ) может быть выбрана матрица (линейка) ПЗС.

Так как поле наблюдения ФПУ разбивается на пиксели, то из законов геометрической оптики и физических характеристиках пикселов следует, что каждый из них соответствует определенному квадрату пространства и наоборот. Дискретизации ФПУ в виде светочувствительных элементов ПЗС и проекция данных элементов на местность (пиксел) должны соответствовать на максимальной дальности наблюдения при минимальном элементе обнаружения (опознания).

Матрицы ПЗС состоят из большого количества светочувствительных элементов (сотни тысяч пикселов), преобразующих световое излучение в электрические сигналы. Последние с помощью специальных устройств записываются или могут сразу же передаваться в память ПЭВМ.

Положение каждого светочувствительного элемента в матрице строго определено. Все они имеют индивидуальные номера, состоящие из двух частей. Первая показывает принадлежность пиксела определенной горизонтальной линии, вторая - вертикальной. Следовательно, каждый кадр имеет своеобразную координатную сетку, не меняющуюся при переходе от кадра к кадру при условии жесткого закрепления прибора. Это обстоятельство позволяет точно определять координаты движущегося объекта при «перемещении» его от одного пиксела к другому.

Чем больше количество пикселов, тем выше качество изображения. Существует несколько форматов записи, отличающихся количеством пикселов в растре. Основными из них являются форматы VHS, S-VHS и Betacam. Первому соответствует 380000 пикселов, второму - 480000, третьему - 564480. Соотношение сторон кадра для первых двух 4:3, для третьего - 16:9.

Рассмотрим требования к величине измеряемого параллактического угла, исходя из требуемой дельности работы дальномера до 7000 м при базе Б=0,350 м (расстоянию между фотоприемниками). Результаты расчета, согласно зависимости (1) сведем в табл.1.

Таблица 1
Определение дальности в зависимости от параллактического угла γ
γD, m200°30'400°10'1200° 01'12000° 00' 30"24000° 00' 10"7200

Таким образом, для определения дальности малогабаритной аппаратурой от 20 м до 7000 м с базой между ПЗС-приемниками, равной 350 мм (учитывая условия ведения артиллерийской разведки, где дальность прямой видимости по картам в среднем составляет 6...7 км), необходимо обеспечить точность определения параллактического угла около 10 угловых секунд. Данное условие для современной техники легко выполнимо.

Общий подход к конструкции приборов. Исходя из высокой динамики боя, прибор должен:

- иметь малую массу, чтобы легко переноситься, то есть быть малогабаритным;

- быстро приводиться в боевое (рабочее) состояние, то есть не иметь массивных треног и др. средств установка.

По взглядам специалистов, снаряжение солдата XXI века станет венцом военно-технической мысли. На фиг.3 приведен вариант снаряжения солдата.

Предлагается нашлемная разведывательная система пассивного дальнометрирования объектов.

Задача изобретения достигается тем, что при наблюдении (разведке) целей (фиг. 2) используется система пассивного (скрытного) дальнометрирования объектов (фиг. 3, 4, 5), размещенная на защитном шлеме (каске) 4 наблюдателя, что позволяет сократить путь вывода разведывательной информации с прибора к зрительным органам наблюдателя.

Пассивное наблюдение и дальнометрирование объектов осуществляется на основе стереоскопического базового метода с использованием двух матриц приборов зарядовой связи (ПЗС), фотоприемные площадки 1 которых наклонены под углом 90° к линии наблюдения.

Нашлемная система дальнометрирования объектов снабжена раздвижными телескопическими направляющими, полупрозрачным экраном и двумя матрицами зарядовой связи для измерения дальности до объекта на основе стереоскопического базового метода, при этом фотоприемные площадки матриц наклонены под углом 90° к линии визирования «фотоприемник-объект», а полупрозрачный экран выполнен с возможностью проецирования на него обработанной информации о целях посредством их наложения на реальное изображение местности.

Фотоприемные площадки расположены на телескопических (раздвижных) направляющих 2 в нашлемном устройстве крепления 3. Перемещение фотоприемных устройств обеспечивает скрытое наблюдение и защиту наблюдателя от осколков (пуль) при вертикальном расположении из укрытия типа окоп, а при горизонтальном положении направляющих - из укрытия типа столб.

Информация о местности и целях в различных диапазонах анализируется в устройстве обработки 5, передается в устройства проектирования 6. Изображение местности и целей в различных диапазонах, а также вычисленная дальность до целей 8 проецируются на полупрозрачные (жидкокристаллические) очки (забрало) 7 и накладываются на реальное изображение местности 9, наблюдаемое органами зрения наблюдателя.

Похожие патенты RU2349864C2

название год авторы номер документа
СИСТЕМА ПАССИВНОГО ДАЛЬНОМЕТРИРОВАНИЯ ОБЪЕКТОВ В УПРАВЛЯЕМЫХ БОЕПРИПАСАХ 2004
  • Пархоменко Василий Александрович
  • Веселов Михаил Михайлович
  • Рябихин Сергей Петрович
  • Устинов Евгений Михайлович
RU2295103C2
ТРЁХКООРДИНАТНОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ОБЪЕКТОВ МОНОКУЛЯРНЫМИ ОПТИКО-ЭЛЕКТРОННЫМИ ПРИБОРАМИ НАЗЕМНЫХ И ВОЗДУШНЫХ РОБОТОТЕХНИЧЕСКИХ КОМПЛЕКСОВ НА ОСНОВЕ СТЕРЕОСКОПИЧЕСКОГО 3D-МОНИТОРИНГА 2021
  • Чебурков Юрий Викторович
  • Пархоменко Александр Васильевич
  • Ошкин Александр Александрович
  • Превезенцев Александр Александрович
  • Епифанов Алексей Игоревич
  • Кузнецов Дмитрий Владимирович
  • Шляхов Игорь Александрович
  • Намазов Руслан Серверович
  • Куторов Артур Алексеевич
RU2789117C2
СПОСОБ ПАССИВНОГО ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ КООРДИНАТ МАЛОГАБАРИТНЫХ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2014
  • Шишков Сергей Викторович
  • Годунов Анатолий Иванович
  • Искоркин Дмитрий Викторович
  • Терёшин Андрей Владимирович
  • Музауи Карим
  • Петелин Кирилл Сергеевич
  • Молоствов Алексей Владимирович
  • Синяев Евгений Геннадьевич
  • Черный Сергей Валерьевич
RU2574224C1
Способ получения стереоскопических снимков с синтезированной величиной стереобазы 2019
  • Фомкин Аркадий Сергеевич
  • Капелюшник Леонид Семёнович
RU2703611C1
ПРИБОР НАБЛЮДЕНИЯ-ПРИЦЕЛ СО ВСТРОЕННЫМ ПАССИВНЫМ ДАЛЬНОМЕРОМ 2021
  • Медведев Александр Владимирович
  • Гринкевич Александр Васильевич
  • Князева Светлана Николаевна
RU2785957C2
ПРИЦЕЛ НА ВНУТРЕННЕЙ БАЗЕ 2016
RU2638625C2
ОПТИКО-ЭЛЕКТРОННЫЙ СТЕРЕОСКОПИЧЕСКИЙ ДАЛЬНОМЕР 2014
  • Зубарь Алексей Владимирович
  • Кайков Кирилл Владимирович
  • Алферов Станислав Владимирович
  • Нурпеисов Серик Жумагалиевич
RU2579532C2
СПОСОБ АВТОМАТИЧЕСКОЙ ВЫВЕРКИ НУЛЕВЫХ ЛИНИЙ ПРИЦЕЛИВАНИЯ ОПТИКО-ЭЛЕКТРОННЫХ КАНАЛОВ ПРИЦЕЛОВ БРОНЕТАНКОВОГО ВООРУЖЕНИЯ 2018
  • Зубарь Алексей Владимирович
  • Гейнце Эдуард Александрович
  • Кирнос Василий Иванович
  • Щербо Александр Николаевич
  • Поздеев Андрей Николаевич
  • Панин Алексей Сергеевич
RU2695141C2
СПОСОБ АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЕ КООРДИНАТ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2011
  • Шишков Сергей Викторович
RU2523446C2
Оптико-электронный пассивный дальномер 2019
  • Медведев Александр Владимирович
  • Гринкевич Александр Васильевич
  • Князева Светлана Николаевна
RU2721096C1

Иллюстрации к изобретению RU 2 349 864 C2

Реферат патента 2009 года НАШЛЕМНАЯ РАЗВЕДЫВАТЕЛЬНАЯ СИСТЕМА ПАССИВНОГО ДАЛЬНОМЕТРИРОВАНИЯ ОБЪЕКТОВ

Изобретение относится к области оптико-электронных приборов, а именно к оптико-электронным малогабаритным наблюдательным и разведывательным системам, и может быть использовано в военной технике. Нашлемная система дальнометрирования объектов снабжена раздвижными телескопическими направляющими, полупрозрачным экраном и двумя матрицами зарядовой связи для измерения дальности до объекта. Фотоприемные площадки матриц наклонены под углом 90° к линии визирования «фотоприемник-объект», а полупрозрачный экран выполнен с возможностью проецирования на него обработанной информации о целях. Техническим результатом является уменьшение пути вывода разведывательной информации с прибора к зрительным органам наблюдателя. 5 ил., 1 табл.

Формула изобретения RU 2 349 864 C2

Нашлемная система дальнометрирования объектов, отличающаяся тем, что она снабжена раздвижными телескопическими направляющими, полупрозрачным экраном и двумя матрицами приборов зарядовой связи (ПЗС) для измерения дальности до объекта на основе стереоскопического базового метода, при этом фотоприемные площадки матриц ПЗС наклонены под углом 90° к линии визирования «фотоприемник-объект», а полупрозрачный экран выполнен с возможностью проецирования на него обработанной информации о целях посредством их наложения на реальное изображение местности.

Документы, цитированные в отчете о поиске Патент 2009 года RU2349864C2

СПОСОБ ВЫСОКОТОЧНОГО ЦЕЛЕУКАЗАНИЯ 1999
RU2165062C1
СИСТЕМА ВИЗУАЛИЗАЦИИ ДЛЯ СТЕНДА МОДЕЛИРОВАНИЯ С ОБЗОРНО-ПРИЦЕЛЬНЫМ УСТРОЙСТВОМ 2001
  • Купервассер Ю.И.
  • Лятерман И.Л.
  • Степанский Б.И.
RU2202829C2
СПОСОБ ИЗМЕРЕНИЯ 1995
  • Лучанский К.М.
  • Левитин В.Ф.
  • Лоповок Н.Т.
RU2117250C1
DE 4415420 A, 09.11.1995.

RU 2 349 864 C2

Авторы

Пархоменко Василий Александрович

Устинов Евгений Михайлович

Бестужев Леонид Васильевич

Грачев Иван Иванович

Шишков Сергей Викторович

Привезенцев Александр Александрович

Бестужев Роман Леонидович

Мрыхин Павел Владимирович

Романов Андрей Константинович

Грачев Александр Иванович

Даты

2009-03-20Публикация

2007-01-31Подача