СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ Российский патент 2009 года по МПК C21D8/02 

Описание патента на изобретение RU2350662C1

Изобретение относится к металлургии, конкретнее к производству толстых листов из низколегированной хромосодержащей стали, используемых при изготовлении сварных кузовов большегрузных самосвалов.

Толстые листы из низколегированной стали, которые используют при изготовлении кузовов большегрузных самосвалов, должны обладать следующим комплексом механических свойств (табл.1):

Таблица 1Механические свойства толстолистовой низколегированной сталиσв, Н/мм2σт, Н/мм2δ5, %KCU-40, Дж/см2Холодный изгиб, град.не менее 1100не менее 950не менее 11не менее 39не менее 90

Известен способ производства высокопрочной низколегированной стали, включающий нагрев слябов до температуры 1000-1180°С, многопроходную горячую прокатку с температурой конца прокатки 950°С до конечной толщины. Горячекатаные листы затем нагревают со скоростью не менее 25°С/мин, закаливают водой и подвергают отпуску [1].

Недостатки известного способа состоят в том, что горячекатаные листы после термического улучшения (закалки с отпуском) имеют низкую прочность и вязкость при отрицательных температурах.

Известен также способ производства высокопрочных листов из низколегированной стали, включающий нагрев слябов до температуры не более 1150°С и горячую прокатку за несколько проходов с суммарным обжатием не менее 30% и с температурой конца прокатки 900-950°С. Горячекатаные листы нагревают до температуры Ас3 - 1000°С и закаливают, после чего подвергают отпуску при температуре 200-400°С и охлаждают водой [2].

Недостатки данного способа состоят в том, что готовые листы имеют низкие вязкостные и пластические свойства, большую неплоскостность.

Наиболее близким аналогом по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства листов из низколегированной хромосодержащей стали, включающий нагрев слябов под прокатку до температуры 1200-1300°С, многопроходную горячую прокатку в регламентируемом температурном диапазоне при температуре конца прокатки 900-1000°С, последующий нагрев до температуры 920-940°С, закалку водой и отпуск при температуре 590-640°С [3] - прототип.

Недостатки известного способа состоят в том, что горячекатаные листы после прокатки и термического улучшения (закалка + отпуск) имеют низкие механические свойства (нестабильную и недостаточную пластичность и ударную вязкость), а также большую неплоскостность. Это приводит к снижению выхода годных листов.

Техническая задача, решаемая изобретением, состоит в повышении механических свойств, снижении неплоскостности и увеличении выхода годных листов.

Поставленная техническая задача решается тем, что в известном способе производства листов из низколегированной хромосодержащей стали, включающем нагрев слябов под прокатку до температуры 1200-1260°С, многопроходную горячую прокатку в регламентируемом температурном диапазоне, согласно предложению, многопроходную прокатку завершают при температуре 800-920°С, после чего листы охлаждают водой до температуры 450-600°С, а затем завершают охлаждение листов на воздухе. Кроме того, в процессе охлаждения листов водой их подвергают правке знакопеременным изгибом.

Сущность предлагаемого изобретения состоит в следующем. Закалка листов из низколегированной стали с отдельного нагрева, как это предусмотрено в способе - прототипе, приводит к формированию микроструктуры, которая представляет из себя реечный мартенсит с дислокационной субструктурой, а после отпуска закаленной стали образуется большое количество частиц карбидов, в основном цементита, и карбонитридов, значительная часть которых располагается по границам кристаллов мартенсита, что ухудшает ударную вязкость при отрицательных температурах. Так, после отпуска закаленной стали внутри кристаллов мартенсита с дислокационной структурой не протекают процессы полигонизации с образованием микрозерен мягкого феррита, что предполагает сохранение высоких прочностных свойств стали, микро- и макронапряжений. В результате снижается пластичность и сохраняется высокая неплоскостность листов даже после многократной холодной правки в роликоправильной машине.

В предложенном изобретении при нагреве слябов из низколегированной хромосодержащей стали под прокатку до температуры 1200-1260°С происходит полное растворение в аустените карбидов и карбонитридов. В температурном диапазоне от 1200-1260°С до температуры конца прокатки 800-920°С низколегированная сталь сохраняет высокую технологическую пластичность, на листах отсутствуют дефекты в виде трещин, разрывов и несплошностей. Последующее охлаждение листов от температуры конца прокатки до температуры 450-600°С из состояния деформированного аустенита приводит к образованию структуры, которая представляет из себя смесь фаз различных морфологий. Основу структуры составляют реечные кристаллы толщиной до 1 мкм, которые можно характеризовать как игольчатый феррит. В этих кристаллах игольчатого феррита присутствуют двойники, а также частицы карбидов хрома, что свидетельствует об отсутствии в кристаллической решетке заметного количества растворенного углерода. На периферии образовавшихся α-участков, состоящих из кристаллов игольчатого феррита, наблюдается в форме окантовки скопление мелких кристаллов сильно двойникового мартенсита, характерного для высокоуглеродистых сталей. Наличие такого мартенсита в низколегированной хромосодержащей стали свидетельствует о диффузионном перераспределении углерода в процессе γ→α превращения с повышением его концентрации в непревращенном на начальном этапе аустените, из которого при последующем превращении образуется не только высокоуглеродистый мартенсит, но и другие фазы: бейнит и перлит.

В результате закалки деформированного аустенита образуется конгломерат фаз, от очень твердых - двойниковый мартенсит до мягких - перлит, что приводит в процессе нагружения металла как при испытании, так и при эксплуатации к релаксации пиковых напряжений, возникающих прежде всего в твердых мартенситных кристаллах с перераспределением их на менее твердые фазы перлита и феррита, что повышает сопротивляемость стали хрупкому разрушению, и пластичность, и вязкость при отрицательных температурах.

Образование гетерогенной структуры в результате реализации предлагаемого изобретения позволяет также снизить неплоскостность листов, т.к. их правки осуществляются в процессе закалки, т.е. одновременно с протеканием фазовых превращений. Дополнительное повышение технологической пластичности, возникающее при протекании фазовых превращений, позволяет эффективно устранить неплоскостность и снизить внутренние напряжения в макрообъеме металла.

В результате достигается повышение механических свойств и снижение неплоскостности благодаря чему увеличивается выход годных листов.

Экспериментально установлено, что повышение температуры нагрева под прокатку более 1260°С приводит к окислению границ зерен низколегированной хромосодержащей стали, чрезмерному их росту, что ухудшает свойства готовой толстолистовой стали. Снижение температуры нагрева менее 1200°С не обеспечивает полного растворения карбидов и карбонитридов. В результате ухудшается гомогенность микроструктуры, снижаются механические свойства готовых толстых листов.

При температуре конца прокатки выше 940°С происходит ухудшение свойств стали из-за чрезмерного роста зерен микроструктуры. Помимо этого последующее охлаждение водой (закалка) от температуры выше 940°С с одновременной правкой листов или без нее, приводит к формированию неблагоприятной микроструктуры реечного бейнита, что ухудшает вязкостные свойства листовой стали при отрицательных температурах и пластичность. Снижение температуры конца прокатки менее 800°С снижает интенсивность вторичного выделения карбонитридных фаз из матрицы, а правка с одновременной закалкой от этой температуры не обеспечивает требуемой пластичности и высокой плоскостности листов. В результате снижается комплекс механических свойств, возрастает неплоскостность толстых листов из низколегированной хромосодержащей стали, сокращается выход годного.

Охлаждение листов водой, в том числе во время их правки знакопеременным изгибом, до температуры выше 600°С не приводит к упрочнению низколегированной хромосодержащей стали и получению гетерогенной многофазной структуры. Формируемая структура перлита и феррита дает низкую прочность и низкую ударную вязкость при отрицательных температурах. В то же время охлаждение листов водой ниже 450°С, как при правке, так и без нее, приводит к образованию однофазной структуры реечного мартенсита с дислокационной субструктурой с повышенной прочностью и низкой пластичностью, что не дает получить требуемый угол изгиба и высокую плоскостность листов. Одновременно с этим, завершение охлаждения листов от температуры 450-600°С на воздухе обеспечивает их самоотпуск, снятие внутренних напряжений, повышение пластических и вязкостных свойств толстых листов из низколегированной хромосодержащей стали, увеличение выхода годного.

Пример реализации способа

При производстве толстых листов для изготовления кузовов большегрузных самосвалов используют слябы толщиной 200 мм из низколегированной хромосодержащей стали марки 18ХГНМФР следующего химического состава, мас.%:

CSiMnVCrNiMoAlNPSFe0,180,311,30,110,850,700,210,020,0100,0150,08остальн.

Слябы нагревают в методической печи до температуры Тн=1230°С и прокатывают на толстолистовом стане 2800 за 10 проходов с понижением температуры до конечной толщины 14 мм. Температура листа в последнем проходе составляет Ткп=860°С.

После заключительного чистового прохода прокатанный лист при температуре Ткп=860°С подают в роликоправильную машину, где одновременно с правкой знакопеременным изгибом, подвергают интенсивному охлаждению водой, т.е. закалке. Охлаждение листа водой ведут до температуры листа Tз=525°С. При достижении этой температуры закалку листа прерывают и его завершающее охлаждение до температуры окружающей среды осуществляют на воздухе. В процессе завершающего охлаждения на воздухе происходит самоотпуск листа со снятием фазовых и термических напряжений.

Благодаря тому, что правку листа знакопеременным изгибом проводят одновременно с протеканием в стали фазовых превращений (использование эффекта динамической сверхпластичности), повышается технологическая пластичность низколегированной хромосодержащей стали, и, одновременно с повышением механических свойств, достигается снижение неплоскостности листа. Помимо этого знакопеременный изгиб дополнительно стимулирует выпадение упрочняющих карбонитридных частиц. В результате имеет место увеличение выхода годного.

Готовые листы из низколегированной хромосодержащей стали марки 18ХГНМФР характеризуются временным сопротивлением разрыву σв=1170 Н/мм2, пределом текучести σ0,2=990 Н/мм2, пластичностью δ5=18%, ударной вязкостью при температуре -40°С KCU-40=48 Дж/см2, холодный изгиб без образования трещин на 180 градусов.

В табл.2 приведены варианты реализации предложенного способа, а в табл.3 - механические свойства листов из стали марки 18ХГНМФР.

Из табл.2 и 3 следует, что при реализации предложенного способа (варианты №2-4) достигается повышение пластичности, вязкости при отрицательных температурах, холодного изгиба образцов. За счет этого имеет место увеличение выхода годного. При запредельных значениях заявленных параметров (варианты №1 и 5) имеет место понижение пластичности и вязкости листовой стали при отрицательных температурах, снижается угол изгиба образцов до появления трещин, возрастает неплоскостность листов, снижается выход годного. В случае применения способа-прототипа (вариант №6) ухудшается комплекс механических свойств и плоскостность листов, такая толстолистовая сталь непригодна для изготовления кузовов большегрузных самосвалов.

Таблица 2Режимы производства листов из низколегированной хромосодержащей стали№ п/пТн, °CТкп, °сТз, °СОкончат. охлаждение11190930930воздух21200920600воздух31230860525воздух41260800450воздух51250790440воздух6125094050отпуск 615°СТаблица 3Механические свойства горячекатаных листов№ п/пσв, Н/мм2σт, Н/мм2δ5, %KCU-40, Дж/см2Холодный изгиб, град.Неплоскостность, мм/мВыход годного, %111009509-1136-3988-901752,1211509801798-99170398,73117099018110-120180299,24120011001689-100160398,551190100010-1238-4289-921658,4694087010-1570-7587-8932-

Технико-экономические преимущества предложенного способа состоят в том, что при его реализации обеспечивается формирование оптимального фазового состава и микроструктуры толстолистовой хромосодержащей стали. Это достигается за счет деформирования листов в заданном температурном интервале, охлаждения водой деформированного аустенита, в том числе непосредственно в процессе правки также в заданном температурном интервале, т.е. при реализации прерванной закалки с прокатного нагрева. Завершающее охлаждение на воздухе закаленных от температуры 450-600°С листов обеспечивает их отпуск. В результате толстолистовая низколегированная хромосодержащая сталь приобретает уникальное сочетание свойств: высокую прочность, вязкость, пластичность. Правка листов знакопеременным изгибом в процессе прерванной закалки при их охлаждении водой обеспечивает существенное снижение неплоскостности, т.к. при этом реализуется эффект пластичности фазовых превращений.

По сравнению со способом-прототипом, в котором используют отдельный нагрев под закалку и отпуск, в предложенном способе все термические операции объединены в одном тепловом цикле, т.е. используют тепло прокатного нагрева. Это является дополнительным преимуществом предложенного способа.

В качестве базового объекта при определении эффективности предложенного способа принят способ-прототип. Использование предложенного способа обеспечит повышение рентабельности производства листовой низколегированной стали для металлоконструкций на 15-20%.

Источники информации

1. Заявка №61-163210, Япония. МПК С21D 8/00, 1986 г.

2. Заявка №61-223125, Япония. МПК С21D 8/02, С22С 38/54, 1986 г.

3. Патент РФ №2191833, МПК С21D 8/02, опубл. 2002 г. - прототип.

Похожие патенты RU2350662C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ МАРТЕНСИТНОГО КЛАССА И ДЕФОРМАЦИОННО-ТЕРМИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Никитин Валентин Николаевич
  • Углов Владимир Александрович
  • Филиппов Георгий Анатольевич
  • Шлямнев Анатолий Петрович
  • Трайно Александр Иванович
  • Никитин Михаил Валентинович
RU2474623C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ТОЛСТОЛИСТОВОЙ СТАЛИ 2013
  • Никитин Валентин Николаевич
  • Настич Сергей Юрьевич
  • Филиппов Георгий Анатольевич
  • Морозов Юрий Дмитриевич
  • Маслюк Владимир Михайлович
  • Никитин Михаил Валентинович
  • Трайно Александр Иванович
RU2533244C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОТВЕРДОГО ИЗНОСОСТОЙКОГО ЛИСТОВОГО ПРОКАТА 2015
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Бережная Галина Андреевна
  • Алексеев Даниил Юрьевич
RU2603404C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ С ВЫСОКОЙ ИЗНОСОСТОЙКОСТЬЮ 2013
  • Никитин Валентин Николаевич
  • Настич Сергей Юрьевич
  • Филиппов Георгий Анатольевич
  • Морозов Юрий Дмитриевич
  • Маслюк Владимир Михайлович
  • Никитин Михаил Валентинович
  • Трайно Александр Иванович
RU2533469C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2010
  • Никитин Валентин Николаевич
  • Шахпазов Евгений Христофорович
  • Шлямнев Анатолий Петрович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Баранов Владимир Павлович
  • Голованов Александр Васильевич
  • Попова Анна Александровна
RU2433191C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2010
  • Вольшонок Игорь Зиновьевич
  • Торшин Виктор Тимофеевич
  • Никитин Валентин Николаевич
  • Шлямнев Анатолий Петрович
  • Филиппов Георгий Анатольевич
  • Никитин Михаил Валентинович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2442831C1
СПОСОБ ПРАВКИ ТОЛСТОЛИСТОВОГО ПРОКАТА 2004
  • Степанов Александр Александрович
  • Ламухин Андрей Михайлович
  • Кувшинников Олег Александрович
  • Гейер Владимир Васильевич
  • Рагуцкий Григорий Анатольевич
  • Ильинский Вячеслав Игоревич
  • Росляков Евгений Николаевич
  • Тяпаев Олег Вячеславович
  • Трайно Александр Иванович
  • Краев Александр Дмитриевич
RU2294806C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА 2006
  • Попова Татьяна Николаевна
  • Голованов Александр Васильевич
  • Немтинов Александр Анатольевич
  • Гейер Владимир Васильевич
  • Краев Александр Дмитриевич
  • Рагуцкий Григорий Анатольевич
  • Зиборов Александр Васильевич
  • Балдаев Борис Яковлевич
  • Морозов Юрий Дмитриевич
  • Марченко Валерий Николаевич
  • Пименова Татьяна Валериевна
  • Трайно Александр Иванович
RU2318027C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ВЫСОКОПРОЧНОГО ИЗНОСОСТОЙКОГО ПРОКАТА (ВАРИАНТЫ) 2018
  • Барабаш Константин Юрьевич
  • Латыпов Марат Хатизович
  • Митрофанов Артем Викторович
  • Матросов Максим Юрьевич
  • Мартынов Петр Геннадьевич
  • Горошко Татьяна Васильевна
RU2691809C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА ИЗ СВАРИВАЕМОЙ ХРОМОМАРГАНЦЕВОЙ СТАЛИ 2011
  • Никитин Валентин Николаевич
  • Филиппов Георгий Анатольевич
  • Настич Сергей Юрьевич
  • Морозов Юрий Дмитриевич
  • Матросов Максим Юрьевич
  • Никитин Михаил Валентинович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Зинько Бронислав Филиппович
  • Сарычев Борис Александрович
  • Денисов Сергей Владимирович
  • Николаев Олег Анатольевич
  • Кравченко Павел Анатольевич
  • Демидченко Юрий Павлович
RU2455105C1

Реферат патента 2009 года СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ

Изобретение относится к металлургии, конкретнее к производству толстых листов из низколегированной хромосодержащей стали, используемых при изготовлении сварных кузовов большегрузных самосвалов. Для повышения механических свойств, снижения неплоскостности и увеличения выхода годных листов слябы нагревают под прокатку до 1200-1260°С и проводят многопроходную горячую прокатку с температурой конца прокатки 800-920°С, после чего листы охлаждают водой до температуры 450-600°С, а затем завершают охлаждение листов на воздухе. Кроме того, в процессе охлаждения листов водой их подвергают правке знакопеременным изгибом. 1 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 350 662 C1

1. Способ производства листов из низколегированной хромосодержащей стали, включающий нагрев слябов под прокатку до 1200-1260°С, многопроходную горячую прокатку в регламентируемом температурном диапазоне, охлаждение листа, отличающийся тем, что многопроходную прокатку завершают при температуре 800-920°С, охлаждение листа ведут сначала водой до 450-600°С, а затем на воздухе.2. Способ по п.1, отличающийся тем, что в процессе охлаждения водой лист подвергают правке знакопеременным изгибом.

Документы, цитированные в отчете о поиске Патент 2009 года RU2350662C1

СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2001
  • Ламухин А.М.
  • Никитин В.Н.
  • Чурюлин В.А.
  • Попова Т.Н.
  • Маслюк В.М.
  • Столяров В.И.
  • Никитин М.В.
  • Голованов А.В.
  • Рябинкова В.К.
  • Северинец И.Ю.
  • Белов Г.А.
  • Квасникова О.О.
  • Демидова А.А.
  • Трайно А.И.
  • Лазько В.Г.
RU2191833C1
СТАЛЬ 2002
  • Ламухин А.М.
  • Никитин В.Н.
  • Голованов А.В.
  • Попова Т.Н.
  • Маслюк В.М.
  • Кувшинников О.А.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Никитин М.В.
  • Баранов В.П.
  • Белов Г.А.
  • Колесников В.Ю.
  • Трайно А.И.
  • Пименова Т.В.
  • Кураш Валентин Станиславович
  • Киселев С.И.
RU2223343C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОГО ЛИСТА 2002
  • Ламухин А.М.
  • Северинец И.Ю.
  • Томин А.А.
  • Бурканов В.М.
  • Голованов А.В.
  • Филатов Н.В.
  • Казакбаев Н.М.
  • Трайно А.И.
  • Тяпаев О.В.
RU2225886C2
СПОСОБ ОБРАБОТКИ СТАЛИ (ВАРИАНТЫ) 1992
  • Тай Вунг Ким[Kr]
  • Джае Кванг Хан[Kr]
  • Рае Вунг Чанг[Kr]
  • Юнг Джил Ким[Kr]
RU2074900C1
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды 1921
  • Каминский П.И.
SU58A1
Приспособление для разматывания лент с семенами при укладке их в почву 1922
  • Киселев Ф.И.
SU56A1

RU 2 350 662 C1

Авторы

Никитин Валентин Николаевич

Попова Татьяна Николаевна

Немтинов Александр Анатольевич

Маслюк Владимир Михайлович

Никитин Михаил Валентинович

Голованов Александр Васильевич

Баранов Владимир Павлович

Скорохватов Николай Борисович

Томин Александр Александрович

Трайно Александр Иванович

Тарасов Павел Александрович

Рослякова Наталья Евгеньевна

Брылин Аркадий Михайлович

Пименова Татьяна Валериевна

Даты

2009-03-27Публикация

2007-06-15Подача