СПОСОБ ВЫДЕЛЕНИЯ И АКТИВАЦИИ КОНСОРЦИУМА АБОРИГЕННЫХ МИКРООРГАНИЗМОВ-ДЕСТРУКТОРОВ НЕФТИ И НЕФТЕПРОДУКТОВ Российский патент 2009 года по МПК C12N1/20 C12N1/26 

Описание патента на изобретение RU2352630C1

Изобретение относится к области охраны окружающей среды и может быть использовано при восстановлении нефтезагрязненных земель.

Способ включает отбор проб с нефтезагрязненной почв и грунтов, выделение ассоциации активных аборигенных штаммов-деструкторов нефти и нефтепродуктов, активацию полученной ассоциации и дальнейшую наработку биомассы ассоциации в ферментерах при оптимальных параметрах культивирования. Способ повышает вероятность поиска наиболее активных представителей углеводородокисляющих микроорганизмов для очистки конкретного участка нефтезагрязненных земель, позволяет сократить затраты на производство и транспортировку биопрепаратов.

Известно, что в почве и грунте, особенно загрязненной нефтью и нефтепродуктами, содержатся аэробные штаммы, способные биотрансформировать нефть и нефтепродукты. Среди них часто встречаются микроорганизмы родов Arthrobacter, Rhodococcus, Pseudomonas, Bacillus и др.

Известно использование биопрепаратов на основе активных штаммов-деструкторов нефти и нефтепродуктов [А.с. СССР №1076446, кл. C12N 15/09, 1978, патент РФ №2019527, кл. C02F 3/34, E02B 15/04, 1993, патент РФ №2142996, кл. C12N 1/26, C02F 3/34, В09С 1/10, 1999]. Недостатками этих способов являются продолжительность времени, необходимого на наработку биопрепарата, высокая стоимость и низкая эффективность.

Известен способ выделения деструкторов нефти и нефтепродуктов из числа аборигенных штаммов микроорганизмов [Патент РФ №2241745. Способ выделения деструкторов нефти и нефтепродуктов. Сатубалдин К.К., Салангинас Л.А.]. (прототип). Суть способа: производится отбор проб с нефтезагрязненной поверхности, затем проводится селекция углеводородокисляющих бактерий с последующим пересевом полученных культур и наработка в отдельности всех отселектированных микроорганизмов в ферментерах при параметрах культивирования, оптимальных для выделенных микроорганизмов. Недостатком известного способа является продолжительность выделения аборигенных нефтеокисляющих микроорганизмов, связанная с селекцией штаммов-деструкторов, а также сложность наработки бактериального препарата на их основе (требуется сложное аппаратурное оформление). Кроме того, не предусмотрена предварительная активация ассоциации нефтеокисляющих штаммов-деструкторов.

Задачей данного изобретения является сокращение продолжительности выделения аборигенных нефтеокисляющих микроорганизмов-деструкторов, упрощение технологии наработки биомассы штаммов-деструкторов.

Суть способа: производится отбор проб с нефтезагрязненных почвы и грунтов и выделение углеводородокисляющих микроорганизмов из образца конкретного участка нефтезагрязненной земли. Далее проводится активация полученной ассоциации с использованием смеси биодобавок биотрина и спиртовой барды, взятых в соотношении 1:1 в качестве фактора роста.

Известно, что информация на деструкцию нефти и нефтепродуктов в основном закодирована в плазмидах бактериальных клеток [Ягафарова Г.Г. Разработка биотехнологии очистки почвы и воды от некоторых хлорфенольных соединений и углеводородов нефти: Дис. на соискание уч. ст. д-ра технических наук. - Уфа, 1994]. Учитывая, что в число ассоциации аборигенных микроорганизмов будут входить как психрофильные, так мезафильные и термофильные микроорганизмы, селекция микроорганизмов не проводилась, а наработка биомассы осуществлялась при 25-30°С.

Способ осуществляется следующим образом.

На первом этапе работ проводится отбор образцов нефтезагрязненных почв и грунтов, выделение микроорганизмов-деструкторов нефти и нефтепродуктов из числа диких штаммов.

Основные операции по отбору проб осуществляются согласно ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб».

Для выделения микроорганизмов-деструкторов нефти и нефтепродуктов используют жидкую питательную среду Маккланга следующего состава: NaNO3 - 2,0 г/л; КН2PO4 - 1,0 г/л; MnSO4 - 0,013 г/л; MgSO4·7H2O - 0,5 г/л; ZnSO4 - 0,002 г/л; Fe2(SO4)3 - 0,001 г/л. Среду стерилизуют при 110°С в течение 30 мин.

Один грамм пробы почвы переносится в стерильную фарфоровую ступку, слегка увлажняется стерильной солевой средой и растирается до пастообразного состояния. Содержимое переносится в колбу на 250 мл (ступку и пестик ополоснуть солевой средой, перенося остаток в ту же колбу). Общий объем смеси доводится до 100 мл.

В качестве единственного источника углерода и энергии добавляют стерильный гексадекан (1 мас.%).

Культивирование проводят в качалочных колбах на термостатированной качалке при температуре 30°С и частоте вращения 100 мин-1 в течение 3 суток. Через трое суток отмечают видимые изменения в системе жидкой фазы - помутнение среды, появление пигмента, расслоение, изменение цвета и др.

Анализ состава накопительной культуры различных физиологических групп микроорганизмов производят путем высева определенных объемов воды на агаризованную среду по методу Коха.

На следующем этапе проводится активация нефтеокисляющих штаммов с помощью биогенных и минеральных добавок.

Активация проводится в жидкой минеральной среде Маккланга. Единственным источником углерода и энергии является нефть и/или нефтепродукты (гексадекан, дизельное топливо, мазут).

Для биологической стимуляции роста микроорганизмов и в качестве фактора роста используется смесь биодобавок: биотрин (ТУ 9291-001-00479994-95) и отход спиртового производства - барда, в соотношении 1:1 в количестве не менее 0,01 мас.%

Биотрин представляет собой сухой продукт, полученный микробиологическим синтезом из углеводородсодержащего сырья. Биотрин является эффективной балансирующей добавкой. Биотрин содержит в своем составе до 40-42% сырого протеина. В биотрине имеется 17 важнейших аминокислот, в том числе незаменимых, а также широкий спектр витаминов, макро- и микроэлементов. Биотрин является экологически чистым продуктом, не содержит токсических элементов.

Отход спиртового производства, барда - имеет в достаточном количестве легко растворимые азотистые соединения и полезные вещества: протеин (20-22%), жир (5-7%), клетчатках (13-18%), зола (7-8%), комплекс микроэлементов (кобальт, марганец, ванадий, железо и др.).

Процесс активации ассоциации штаммов-деструкторов проводят при температуре t=25-30°С и рН 7. Необходимо периодическое перемешивание.

На третьем этапе проводится наращивание необходимого количества биомассы полученной ассоциаци.

Глубинное культивирование ассоциации аборигенных микроорганизмов проводят в биореакторе, снабженном компрессором и мешалкой (например, 114.207.012.01.00.00 Ферментатор объемом 1 м3, материал 12Х18Н10Т ГОСТ 5632-73 с перемешивающим устройством). Поддерживают заданную температуру, рН, pO2. Культивирование проводят в полной минеральной среде Маккланга. В качестве источника углерода используют жидкие парафины, а при их отсутствии дизельное топливо или сырую нефть не менее 1 мас.% Процесс проводится при температуре t=25-30°С и рН 7 в течение 1-3 суток до достижения биомассы 0,3-0,5 мас.% При этом численность нефтеокисляющих микроорганизмов в готовой суспензии должна составлять не менее 109 клеток/мл. В процессе культивирования контролируют температуру ведения ферментации, накопление биомассы (методом КОЕ на 12 час культивирования и далее через каждые 6 часов), микрокопирование препарата ферментационной жидкости, рН.

По окончании процесса культивирования наработанную суспензию сливают в емкости и используют в качестве биопрепарата для обработки нефтезагрязненных объектов.

На 1 м2 нефтезагрязненных земель (содержание нефти до 13 мас.%) используют 1-1,5 л полученной суспензии аборигенных микроорганизмов. Для очистки нефтезагрязненных вод от нефти и нефтепродуктов суспензию ассоциации штаммов-деструкторов добавляют в биореактор для очистки сточной воды в количестве 3-5 об.%

Пример 1

С целью изучения процесса выделения аборигенных микроорганизмов из образцов нефтезагрязненных земель: Полигон Северный (Волжский р-н, п.Водино) - образец №1 (общее содержание нетфи и нефтепродуктов 3 мас.%), Дружба-1 (Безенчукский р-н, 37-й км) - образец №2 (общее содержание нетфи и нефтепродуктов 5 мас.%) или ЛПДС Самара (п.Просвет) - образец №3 (общее содержание нетфи и нефтепродуктов 10 мас.%) были проведены эксперименты в стерильной жидкой минеральной среде Маккланга.

В качестве факторов роста в первой серии опытов добавляли биотрин в количестве 0,01 мас.%, во второй серии опытов добавляли спиртовую барду в количестве 0,01 мас.%, в третьей серии опытов добавляли смесь биодобавок (биотрин:барда = 1:1) в количестве 0,01 мас.%. В качестве единственного источника углерода и энергии добавляли стерильный гексадекан в количестве 1 мас.%. В опытные колбы №1, №2 и №3 вносили по 1 г образцов техногеннозагрязненных земель №1, №2 и №3 соответственно. Для сравнения ставили аналогичные опыты без добавления биодобавок.

Культивирование проводили в качалочных колбах на термостатированной качалке при температуре 30°С и частоте вращения 100 мин-1.

О нефтеокисляющей способности аборигенной микрофлоры судили по уменьшению содержания гексадекана, приросту численности микроорганизмов и изменению рН среды.

Содержание гексадекана определяли спектрофотометрически на приборе UR-20 при 1460 см-1, предварительно экстрагируя его четыреххлористым углеродом.

Изменение рН культуральной жидкости определяли путем замера рН с помощью иономера И-130,2 М в начале и конце культивирования.

Численность микроорганизмов определяли чашечным методом Коха при высеве на агаризованную среду для гетеротрофных микроорганизмов (мясопептонный агар).

Результаты исследований представлены на фигурах 1-2 и таблице 1. После 3 суток культивирования в опытных колбах №1, 2 и 3 с добавлением биотрина и с добавлением барды наблюдалось помутнение культуральной жидкости и появление пленки.

Как видно из фигуры 1, во всех опытных колбах с биотрином и бардой наблюдалось увеличение общего количества микроорганизмов и изменение рН среды в сторону подщелачивания (таблица 1). При этом наибольший прирост микроорганизмов наблюдался в серии опытов со смесью биодобавок биотрин:барда.

Содержание гексадекана снизилось в среднем до 0,1 мас.% сериях опытов с одной биодобавкой и до 0,07 мас.% в серии опытов со смесью биодобавок (фигура 2). В контрольных колбах изменений содержания гексадекана, количества микроорганизмов и рН среды не наблюдалось.

В опытных колбах без биодобавок незначительный прирост количества микроорганизмов наблюдался лишь на 3 сутки, содержание гексадекана снизилось незначительно (до 0,7-0,9 мас.%).

Таким образом, биотрин и спиртовая барда являются активными стимуляторами роста аборигеных нефтеокисляющих микроорганизмов.

Пример 2

Для установления оптимальной концентрации смеси биодобавок биотрин:барда для активации аборигенных микроорганизмов ставили следующий опыт. В жидкую минеральную среду Маккланга добавляли стерильную нефть конкретного месторождения (Самарская обл.) в количестве 1 мас.% и различные количества смеси биодобавок (биотрин:барда = 1:1): 0,01, 0,03, 0,05, 0,10 мас.%. Для биодеградации нефти вводили суспензию ассоциации аборигенных микроорганизмов, полученную в примере 1 (образец №1) в количестве 3 об.%. Контролем служила колба без добавления биодобавок.

О биодеградации нефти судили по уменьшению ее количества, которое определяли спектрофотометрически на приборе UR-20 при 2923 см-1, предварительно экстрагируя ее четыреххлористым углеродом.

Как видно из результатов приведенных в таблице 2, степень биодеградации уже при содержании биодобавок 0,01 мас.% на 10% выше, чем без добавления биодобавок.

Таким образом, концентрация смеси биодобавок биотрина и барды в соотношении 1:1, равная 0,01 мас.%, уже достаточна для активации аборигенных микроорганизмов.

Пример 3

Для изучения процессов биодеградации нефти и нефтепродуктов были проведены эксперименты в жидкой минеральной среде Маккланга (стерильной). В качестве единственного источника углерода и энергии добавляли нефть конкретного месторождения (Самарская обл.), в количестве 1 мас.%. Для биодеградации нефти в среду вносили суспензию ассоциации активированных аборигенных микроорганизмов из нефтезагрязненных образцов (№1, №2 или №3) почв в количестве 3 об.%.

В качестве факторов роста добавляли смесь биодобавок биотрина и барды в соотношении 1:1 в количестве 0,01 мас.%. Культивирование проводили в качалочных колбах на термостатированной качалке при температуре 30°С и частоте вращения 100 мин-1. Для сравнения ставили аналогичные опыты без добавления биодобавок. Колбы с минеральной средой Маккланга, содержащие 1 мас.% нефти, но не инокулированные микроорганизмами, служили контролем.

О степени биодеградации нефти судили по уменьшению ее количества, а также косвенно по приросту численности бактерий и изменению рН среды.

Результаты исследований представлены на рисунках 1-3 и таблице 1.

Как видно из фигуры 3, биодеградация нефти произошла более чем на 90% во всех опытах с использованием активированной микрофлорой, в то время как в контрольных колбах естественная убыль нефти не превышала 5%.

При этом во всех опытных колбах наблюдалось увеличение общего количества микроорганизмов (фигура 4) и изменение рН среды в сторону подщелачивания (таблица 3). В контрольных колбах никаких изменений не наблюдалось.

Пример 4.

С целью исследования процесса биоразложения легких и тяжелых фракций углеводородов при помощи аборигенной микрофлоры с добавлением смеси биодобавок биотрина и барды в соотношении 1:1 были проведены эксперименты.

Для этого в серии опытов аборигенные штаммы микроорганизмов культивировали в стерильной минеральной среде со смесью биодобавок биотрина и барды в соотношении 1:1 (0,01 мас.%) с добавлением в качестве единственного источника углерода: гексадекан, дизельное топливо, нефть и мазут конкретного месторождения (Самарская обл.) в количестве 1 мас.%. Колбы без добавления биодобавок служили контролем.

Минеральную среду Маккланга (состав приведен выше) разливали по 50 мл в качалочные колбы объемом 250 мл и стерилизовали при 1 атм. 30 мин. Засевали из расчета 3% по объему суспензии аборигенных микроорганизмов. В качестве единственного источника углерода добавляли гексадекан, дизельное топливо, нефть или мазут в количестве 1 мас.%.

Условия культивирования описаны выше.

О биоразложении нефти и нефтепродуктов судили путем количественного анализа на спектрофотометре UR-20 при 2923 см-1 (нефти, дизельное топливо, мазут) и при 1460 см-1 (гексадекан). Предварительно нефть и нефтепродукты экстрагировали четыреххлористым углеродом

На фигуре 5 представлены результаты изучения зависимости биодеградации гексадекана, дизельного топлива, нефти, мазута в воде через 48 часов.

Из приведенных данных таблицы 4 и фигуры 5 видно, что аборигенные микроорганизмы способны использовать не только легкие фракции нефти, такие как гексадекан, но и дизельное топливо и более тяжелые фракции нефти, как мазут, т.е. разлагать широкий спектр углеводородов. Причем степень биодеградации при добавлении смеси биодобавок биотрин и барда в соотношении 1:1 в качестве стимулятора роста увеличивает степень биодеградации нефти и нефтепродуктов в среднем на 20%. Так в опытах с добавлением смеси биодобавок степень биодеградации гексадекана составила 99%, дизельного топлива 85%, нефти - 84%, мазута - 65%. В опытах без добавления биодобавок степень биодеградации составила 61; 52,8; 48,2 и 32,7% соответственно.

Пример 5

С целью определения окислительной способности аборигенной микрофлоры образцов почвы и в нефтезагрязненной почве с заданных участков исследовали 3 образца нефтезагрязненных почв и грунтов:

1. Полигон Северный (Волжский р-н, п.Водино) - образец №1.

Общее содержание нефти и нефтепродуктов 3 мас.%.

2. Дружба-1 (Безенчукский р-н, 37-й км) - образец №2.

Общее содержание нефти и нефтепродуктов 5 мас.%.

3. ЛПДС Самара (п.Просвет) - образец №3.

Общее содержание нефти и нефтепродуктов 10 мас.%.

Исследования проводили в фарфоровых чашках объемом 100 мл. В первой серии опытов 50 мг загрязненных образцов почвы обрабатывали суспензией аборигенных микроорганизмов (3 об.%), взятых с этого же образца и смесью биодобавок биотрина и барды взятых в соотношении 1:1 (0,01 мас.%). Во второй серии опытов не добавляли биодобавки. Контролем служили чашки без внесения микроорганизмов.

Очистку почвы проводили при комнатной температуре в течение 90 суток. Влажность почвы поддерживали 60% от полной влагоемкости.

О степени биодеградации нефти судили по ее остаточному количеству в почве.

Результаты исследований представлены на фигуре 6.

Как видно из результатов, приведенных на фигуре 6, активированная ассоциация аборигенной микрофлоры способна деградировать нефть и нефтепродукты в почве и грунте. Причем при обработке почвы смесью биодобавок биотрина и барды, взятых в соотношении 1:1, степень биодеградации заметно возрастает. Так для образцов почвы №1, 2 и 3 она составила 80, 75 и 64% соответственно. Без обработки биодобавками - 60, 57 и 42%.

Таблица 1
Результаты измерения рН в опытных и контрольных колбах
Название опыта Начальное Через 3 суток Образец №1 с биотрином 6,2 7,2 Образец №1 с бардой 6,2 7,2 Образец №1 без биодобавок 6,2 6,8 Образец №2 с биотрином 6,2 7,1 Образец №2 с бардой 6,2 7,0 Образец №2 без биодобавок 6,2 6,9 Образец №3 с биотрином 6,2 7,1 Образец №3 с бардой 6,2 7,1 Образец №3 без биодобавок 6,2 6,9 Контроль 6,2 6,2

Таблица 2
Влияние количества смеси биодобавок на степень биодеградании нефти
Концентрация биодобавок, % 0 0,01 0,03 0,05 0,08 0,10 Степень биодеградации нефти, % 68 78 84 91 91 91

Таблица 3 Название опыта Начальное Через 3 суток Образец №1 с биодобавками 6,2 7,0 Образец №1 без биодобавок 6,2 6,8 Образец №2 с биодобавками 6,2 7,1 Образец №2 без биодобавок 6,2 6,7 Образец №3 с биодобавками 6,2 7,1 Образец №3 без биодобавок 6,2 6,8 Контроль с биодобавками 6,2 6,2 Контроль без биодобавок 6,2 6,2

Таблица 4
Динамика роста микроорганизмов в среде с углеводородами с добавлением смеси биодобавок
Вариант Количество микроорганизмов, растущих на МПА, кл/мл, час 0 24 36 48 1. Гексадекан 1·105 8·107 5·108 1·109 2. Диз. топливо 1·105 9·107 7·108 9·108 3. Нефть 1·105 8·107 3·108 5·108 4. Мазут 1·105 9·106 2·107 4·107

Похожие патенты RU2352630C1

название год авторы номер документа
Способ выделения штаммов микроорганизмов-деструкторов нефти 2016
  • Лабутова Наталья Марковна
RU2624667C1
Способ выделения микроорганизмов для очистки и восстановления нефтезагрязненных почв и грунтов методом фитобиоремедиации 2019
  • Беркович Ян Владимирович
  • Валидов Шамиль Завдатович
RU2735870C1
АССОЦИАЦИЯ ШТАММОВ БАКТЕРИЙ-НЕФТЕДЕСТРУКТОРОВ И СПОСОБ РЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ОБЪЕКТОВ 2012
  • Ильичева Татьяна Николаевна
  • Мокеева Анна Владимировна
  • Шестопалов Александр Михайлович
  • Емельянова Елена Константиновна
  • Алексеев Александр Юрьевич
  • Забелин Владимир Аркадьевич
RU2509150C2
СПОСОБ ОЧИСТКИ НЕФТЕШЛАМА ОТ НЕФТИ И НЕФТЕПРОДУКТОВ 2005
  • Ягафарова Гузель Габдулловна
  • Ильина Елена Геннадьевна
  • Леонтьева Светлана Валерьевна
  • Ягафаров Ильгизар Рифович
  • Сафаров Альберт Хамитович
RU2332362C2
ШТАММ МИКРОМИЦЕТА FUSARIUM SP. N 56 ДЛЯ ОЧИСТКИ ВОДЫ И ПОЧВЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ 1997
  • Ягафарова Г.Г.
  • Гатауллина Э.М.
  • Барахнина В.Б.
  • Ягафаров И.Р.
  • Сафаров А.Х.
RU2126041C1
БИОПРЕПАРАТ-НЕФТЕДЕСТРУКТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПОЧВ И ГРУНТОВ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ 2007
  • Логинов Олег Николаевич
  • Мелентьев Александр Иванович
  • Силищев Николай Николаевич
  • Докичев Владимир Анатольевич
  • Алимбеков Роберт Ибрагимович
  • Мустафин Ахат Газизьянович
  • Чжан Вейму
RU2323970C1
БИОПРЕПАРАТ ДЛЯ ОЧИСТКИ ПОЧВ ОТ ЗАГРЯЗНЕНИЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2007
  • Филонов Андрей Евгеньевич
  • Кошелева Ирина Адольфовна
  • Самойленко Владимир Александрович
  • Шкидченко Александр Николаевич
  • Нечаева Ирина Александровна
  • Пунтус Ирина Филипповна
  • Гафаров Арслан Булатович
  • Якшина Татьяна Васильевна
  • Боронин Александр Михайлович
  • Петриков Кирилл Владимирович
RU2378060C2
СПОСОБ МИКРОБИОЛОГИЧЕСКОЙ ОЧИСТКИ НЕФТЯНЫХ ШЛАМОВ И ЗАГРЯЗНЕННОГО НЕФТЕПРОДУКТАМИ ГРУНТА (ВАРИАНТЫ) 2006
  • Карасева Эмма Викторовна
  • Самков Андрей Александрович
  • Волченко Никита Николаевич
  • Карасев Сергей Геннадьевич
  • Худокормов Александр Александрович
RU2311237C1
Препарат для биодеградации нефти и нефтепродуктов (Нефтедеструктор) 2021
  • Саргин Борис Викторович
  • Остах Сергей Владимирович
  • Батарагин Валерий Михайлович
  • Шурыгина Екатерина Григорьевна
  • Деньгаев Алексей Викторович
RU2763428C1
БИОПРЕПАРАТ ДЛЯ БИОРЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ ДЛЯ КЛИМАТИЧЕСКИХ УСЛОВИЙ КРАЙНЕГО СЕВЕРА 2013
  • Ерофеевская Лариса Анатольевна
  • Глязнецова Юлия Станиславовна
RU2565549C2

Реферат патента 2009 года СПОСОБ ВЫДЕЛЕНИЯ И АКТИВАЦИИ КОНСОРЦИУМА АБОРИГЕННЫХ МИКРООРГАНИЗМОВ-ДЕСТРУКТОРОВ НЕФТИ И НЕФТЕПРОДУКТОВ

Изобретение относится к биотехнологии. Способ включает отбор проб с нефтезагрязненных почв и грунтов, выделение консорциума аборигенных нефтеокисляющих микроорганизмов, причем после выделения проводят активацию консорциума аборигенных нефтеокисляющих микроорганизмов с использованием смеси биотрина с отходом спиртового производства - барды, при соотношении компонентов 1:1 в количестве не менее 0,01 мас.%. Изобретение позволяет сократить продолжительность выделения аборигенных нефтеокисляющих микроорганизмов-деструкторов, упростить технологию наработки биомассы штаммов-деструкторов. 6 ил., 4 табл.

Формула изобретения RU 2 352 630 C1

Способ выделения и активации консорциума аборигенных нефтеокисляющих микроорганизмов, включающий отбор проб с нефтезагрязненных почв и грунтов, выделение консорциума аборигенных нефтеокисляющих микроорганизмов, отличающийся тем, что после выделения проводят активацию консорциума аборигенных нефтеокисляющих микроорганизмов с использованием смеси биотрина с отходом спиртового производства - барды при соотношении компонентов 1:1 в количестве не менее 0,01 мас.%.

Документы, цитированные в отчете о поиске Патент 2009 года RU2352630C1

СПОСОБ ВЫДЕЛЕНИЯ ДЕСТРУКТОРОВ НЕФТИ И НЕФТЕПРОДУКТОВ 2002
  • Сатубалдин К.К.
  • Салангинас Л.А.
RU2241745C2
СПОСОБ ОБЕЗВРЕЖИВАНИЯ НЕФТЯНОГО ШЛАМА 2005
  • Милькина Раиса Игнатьевна
  • Буймова Татьяна Тимофеевна
RU2300430C2
СПОСОБ ВЫДЕЛЕНИЯ БИОМАССЫ МИКРООРГАНИЗМОВ ИЗ КУЛЬТУРАЛЬНОЙ СРЕДЫ 0
  • Дте Унйч Елг А. Нещадим, И. А. Малеинова М. К. Петрова Авторы Изобретени Витель Пещадим, Алеинова Петрова
SU369136A1
КОЧЕТКОВ В.В
и др
Выделение и характеристики бактерий деструкторов пестицидов
Прикладная биохимия и микробиология, 1997, т.33, №3, с.310-313.

RU 2 352 630 C1

Авторы

Ягафарова Гузель Габдулловна

Головцов Михаил Владимирович

Леонтьева Светлана Валерьевна

Сафаров Альберт Хамитович

Ягафаров Ильгизар Римович

Барахнина Вера Борисовна

Даты

2009-04-20Публикация

2007-09-25Подача