УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА Российский патент 2009 года по МПК B22F9/10 

Описание патента на изобретение RU2356696C1

Предлагаемое изобретение относится к области металлургии и может быть использовано при получении металлических порошков.

Известна установка для получения металлического порошка, состоящая из плавильной камеры с нагревателем, камеры подачи заготовок и копильника, причем плавильная камера выполнена составной из двух частей с разъемом между ними в вертикальной плоскости, первая из которых (стационарная) связана с камерой подачи заготовок и копильником, а вторая (отъемная) связана с нагревателем (Авторское свидетельство на изобретение СССР №820068, B22F 9/08, 1979 г.).

Недостатком этой установки является низкое качество производимого порошка из-за возможных инородных включений и повышенного содержания окислов на поверхности частиц.

Известна установка для получения металлического порошка, содержащая плавильную камеру с нагревателем, механизм вращения и осевого перемещения заготовки, размещенные в герметичном кожухе, дозатор заготовок, приемную камеру для порошка и емкость для порошка (Авторское свидетельство СССР №534304, B22F 9/08, 1976 г.) - прототип.

Недостатком этой установки является ограничение номенклатуры производимых порошков, неоднородность их фракционного состава.

Предлагаемая установка для получения металлического порошка содержит плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками, при этом механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.

Предлагаемая установка отличается от прототипа тем, что механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.

Технический результат - расширение диапазона по крупности частиц получаемых порошков, повышение их однородности по фракционному составу и, как следствие, расширение сортамента изделий, получаемых из этих порошков, с повышенным уровнем физико-механических свойств и, как следствие, повышение срока службы.

Предлагаемая установка позволяет получать металлические порошки различной крупности, в том числе и ультрадисперсные с крупностью частиц менее 100 мкм, однородного фракционного состава за счет расширения диапазона частоты вращения заготовки вплоть до очень высоких значений, порядка 20000-25000 мин-1. Поддержание такой высокой частоты вращения заготовки обеспечивают конструктивные особенности установки, заключающиеся в том, что подшипниковые опоры приводных валков механизма вращения и прижимного ролика, испытавающие повышенный нагрев трущихся частей, генерацию электростатических зарядов, повышенную частоту виброколебаний, снабжены устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний.

Для снижения износа толкателя от трения, особенно при повышенных частотах вращения заготовки, толкатель, размещенный в камере механизмов, выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки. При этом за счет газовой струи, выходящей из сопла, создается «газовая подушка» между толкателем и торцом заготовки, резко снижающей трение и образование металлической пыли, проникновению которой в трущиеся части подшипниковых опор препятствует наличие байпасного трубопровода с клапаном между плавильной камерой и камерой механизмов. Клапан, обеспечивающий перепуск газа, можно настроить так, что в камере механизмов поддерживается более высокое давление газа, чем в плавильной камере, и газ, содержащий металлическую пыль, будет перетекать в плавильную камеру, тем самым препятствуя осаждению пыли в камере механизмов и в том числе в подшипниковых опорах.

Установка позволяет получать мелкозернистую структуру самих частиц, уменьшить их размер и размер примесных частиц, которые практически всегда присутствуют в массе основного порошка и благодаря этому снизить их вредное влияние на механические свойства компактных изделий, отпрессованных из порошков. Изделия, получаемые из таких порошков, обладают более высоким уровнем физико-механических свойств (предел прочности, пластичности), которые позволяют расширить сортамент выпускаемых изделий из них, в том числе применять порошки для изготовления изделий ответственного назначения с повышением эксплуатационного ресурса.

Предлагаемая установка поясняется чертежами, где на:

- фиг.1 показано фронтальное сечение;

- фиг.2 - поперечное сечение;

- фиг.3 - вид сверху.

Установка состоит из опоры 1, на которой смонтированы плавильная камера 2, камера механизмов 3, соединенные между собой фланцевым разъемом 4.

Плавильная камера 2 снабжена откатной крышкой 5, в которой установлен нагреватель 6 (плазмотрон) с механизмом 7 его рабочего перемещения. Стенки плавильной камеры 2 и плазмотрон 6 сообщены трубопроводами 8 с источником охлаждающей воды (на фиг.1-3 не показан).

Камера механизмов 3 состоит из вакуум-плотного корпуса, в объеме которого смонтированы два горизонтальных цилиндрических валка 9 на подшипниковых опорах 10 с газовым охлаждением, противоэрозионными втулками на их поверхностях качения, датчиками контроля температуры и уровня виброколебаний (на фиг.1-3 не показаны), с электроприводом вращения от индивидуальных электродвигателей 11, нажимной подвижной ролик 12 на подшипниковых опорах той же конструкции, что и опоры 10, размещенный над валками 9 и снабженный механизмом 13 прижатия его к цилиндрической заготовке, опирающейся на оба валка одновременно.

Во фланцевом разъеме 4 камер смонтирован водоохлаждаемый экран 14 с центральным отверстием под заготовку. Соосно с заготовкой размещен механизм продольной подачи 15 с толкателем 16 и сопловым аппаратом 17.

Установка снабжена электросистемой 18, системой создания вакуума и газовой системой, с которой сообщен сопловый аппарат 17. К камере механизмов 3 сбоку пристыкован дозатор заготовок (на фиг.1-3 не показан), который снабжен механизмом подачи заготовки 19 с лотком 20.

Камера плавильная 2 и камера механизмов 3 сообщены между собой байпасным трубопроводом 21 с регулирующим клапаном 22.

Установка работает следующим образом.

Запуск установки начинают с включения вакуумной системы на откачку воздуха из камер установки до заданного остаточного давления 0,013 Па. При достижении заданного вакуума систему откачки отключают и из газовой системы заполняют полости камер рабочей газовой атмосферой (например, инертными газами) до заданного давления.

Из дозатора заготовок по лотку 20 с помощью механизма подачи 19 на валки 9 подается заготовка 23 и прижимается к валкам 9 нажимным роликом 12 посредством механизма 13. Механизмом продольной подачи 15 с толкателем 16 заготовка перемещается вдоль валков в плавильную камеру 2 через отверстие водоохлаждаемого экрана 14 в положение, при котором расстояние от плоскости экрана 14 до торца заготовки 23 составляет ~25÷30 мм. Включают газовую систему и рециркулируют рабочий газ через камеры установки с подачей его в сопловый аппарат 17 толкателя 16 для создания газовой подушки между толкателем и торцем заготовки, подшипниковые опоры 10 на охлаждение, причем клапан 22 на байпасном трубопроводе 21 настраивают так, чтобы давление газа в камере механизмов было выше, чем в плавильной камере, и газ всегда двигался в сторону плавильной камеры, обеспечивая вынос металлической пыли из камеры механизмов.

Задается рабочая частота вращения валков 9, после чего зажигается дуга плазмотрона 6, устанавливается заданное значение мощности (тока и напряжения). Плазмотрон 6 механизмом 7 перемещается к торцу вращающейся заготовки на расстояние ~20 мм, и начинается процесс плавления и диспергации заготовки. Включается механизм продольной подачи 15 заготовки, и устанавливается на нем заданная скорость подачи (плавления) заготовки и корректируется мощность (ток, напряжение) плазмотрона таким образом, чтобы положение торца заготовки 23 относительно плазмотрона 6 оставалось неизменным. Процесс подачи заготовки механизмом 15 с толкателем 16 продолжается до тех пор, пока длина оставшейся (нерасплавленной) ее части (огарка) не достигнет той минимальной длины, которую способен еще надежно удержать на валках 9 прижимной ролик 12. После этого плавка останавливается, плазмотрон 6 механизмом 7 отводится от торца огарка, снижается ток и напряжение на плазмотроне до минимальных значений, обеспечивающих устойчивое горение дуги в плазмотроне 6, останавливается вращение валков 9, отводится от огарка прижимной ролик 12 и сбрасывается огарок в камеру 2. Затем отводится механизм продольной подачи 15 в крайнее, удаленное от плавильной камеры 2, положение и на валки 9 подается из дозатора заготовок механизмом 19 следующая заготовка 23 и далее, действуя аналогично тому, как описано ранее по распылению первой заготовки, обеспечивается плавление и диспергация второй и последующих заготовок, находящихся в загрузочной камере.

Были проведены сравнительные исследования физических, химических и технологических свойств гранул, полученных на предлагаемой установке и установке-прототипе. Результаты исследования приведены в таблице 1.

Таблица 1 Свойства гранул, полученных на предлагаемой установке распыления и установке-прототипе № п/п Наименование параметра Предлагаемая установка Установка-прототип 1 Содержание кислорода ≤0,005 ≤0,007 2 Крупность основной фракции порошка, мкм <100 <140 3 Содержание в партии гранул основной фракции, % 92 76 4 Насыпная плотность, г/см3 5,12 4,96 5 Плотность после утряски, г/см3 5,68 5,49 *6 Предел прочности, МПа 1450 1250 *7 Предел текучести, МПа 1020 800 *8 Относительное удлинение, % 18 13 9* Сопротивление малоцикловой усталости, количество циклов до 10000 5000 * - свойства даны для изделий, отпрессованных из гранул, полученных по указанным вариантам.

Данные, приведенные в таблице 1, свидетельствуют о том, что предлагаемая установка позволяет получать металлические порошки (гранулы) различной крупности, в том числе и ультрадисперсные с крупностью менее 100 мкм более однородного фракционного состава, что повышает уровень физико-механических свойств изделий, отпрессованных из них. Ресурс работы изделий под фиксированной нагрузкой при этом возрастает, как следует из данных таблицы 1, также до двух раз.

Похожие патенты RU2356696C1

название год авторы номер документа
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ ВРАЩАЮЩЕЙСЯ ЗАГОТОВКИ 2013
  • Задерей Александр Геннадьевич
  • Авдюхин Сергей Павлович
  • Старовойтенко Евгений Иванович
RU2549797C1
Способ получения металлического порошка методом центробежного распыления, устройство для осуществления способа 2016
  • Ковалёв Геннадий Дмитриевич
  • Авдюхин Сергей Павлович
  • Ваулин Дмитрий Дмитриевич
  • Старовойтенко Евгений Иванович
RU2645169C2
Устройство для получения гранул 1977
  • Каринский Виктор Николаевич
  • Мусиенко Виктор Тарасович
  • Глазунов Сергей Георгиевич
SU933122A1
Установка для получения порошка 1978
  • Кононов Иван Афанасьевич
  • Мусиенко Виктор Тарасович
  • Катков Олег Петрович
SU710778A2
Устройство для получения металлических порошков методом центробежного распыления 2020
  • Сафронов Борис Владимирович
  • Орлов Владислав Константинович
  • Глебов Алексей Владимирович
  • Иванов Сергей Игоревич
RU2742125C1
Установка для получения порошка 1975
  • Кононов Иван Афанасьевич
  • Катков Олег Петрович
  • Малышев Владимир Иванович
  • Мусиенко Виктор Тарасович
  • Расшивалкин Михаил Иванович
SU534304A1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА МЕТОДОМ ЦЕНТРОБЕЖНОГО РАСПЫЛЕНИЯ 2011
  • Старовойтенко Евгений Иванович
RU2467835C1
Установка для получения металлических порошков 1987
  • Кулак Леонид Денисович
  • Залесский Михаил Игоревич
  • Копершевич Павел Михайлович
  • Сорокина Ольга Всеволодовна
  • Фирстов Сергей Алексеевич
  • Кузьменко Николай Николаевич
  • Дорогой Александр Андреевич
  • Михайлов Николай Михайлович
  • Шорина Людмила Константиновна
SU1419812A1
Способ получения металлических порошков или гранул 2020
  • Каблов Евгений Николаевич
  • Князев Андрей Евгеньевич
  • Мин Павел Георгиевич
  • Востриков Алексей Владимирович
  • Бакрадзе Михаил Михайлович
  • Вадеев Виталий Евгеньевич
  • Мин Максим Георгиевич
  • Новожилов Алексей Николаевич
RU2760905C1
Способ получения металлического порошка 2020
  • Фролов Владимир Яковлевич
  • Юшин Борис Альбертович
  • Кадыров Арслан Алмазович
RU2769116C1

Реферат патента 2009 года УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА

Изобретение относится к области металлургии, а именно к установкам для получения металлических порошков. Установка содержит плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками. Механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний. Приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки. Плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном. Технический результат - расширение диапазона размеров получаемых порошков и повышение однородности их размера. 3 ил., 1 табл.

Формула изобретения RU 2 356 696 C1

Установка для получения металлического порошка, содержащая плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками, отличающаяся тем, что механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.

Документы, цитированные в отчете о поиске Патент 2009 года RU2356696C1

Установка для получения порошка 1975
  • Кононов Иван Афанасьевич
  • Катков Олег Петрович
  • Малышев Владимир Иванович
  • Мусиенко Виктор Тарасович
  • Расшивалкин Михаил Иванович
SU534304A1
SU 1292274 A1, 09.06.1995
Устройство для получения порошков металлов, сплавов и других токопроводящих материалов 1944
  • Романов В.Д.
  • Лазаренко Б.Р.
  • Виноградова Л.Г.
SU70264A2
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1

RU 2 356 696 C1

Авторы

Гарибов Генрих Саркисович

Старовойтенко Евгений Иванович

Катков Олег Петрович

Кошелев Виктор Яковлевич

Иноземцев Александр Александрович

Колесов Николай Аркадьевич

Василенко Александр Алексеевич

Даты

2009-05-27Публикация

2007-09-14Подача