Изобретение относится к области полимерного материаловедения, а именно к электропроводящим материалам с положительным температурным коэффициентом сопротивления, содержащим полимеры - диэлектрики и мелкодисперсный неорганический наполнитель, и может быть использовано для изготовления электронагревательных элементов с положительным температурным коэффициентом сопротивления, применяющихся для подогрева трубопроводов, предназначенных для транспортировки высоковязких продуктов, например нефти и нефтепродуктов.
Известен электропроводящий полимерный композиционный материал на основе термостойкого полимера, содержащий силициды железа, а в качестве электропроводящего вещества пиролитический графит и никель (RU 2240616 С2, 20.11.2004).
Недостатками известного материала являются сложный состав и трудоемкость совмещения компонентов и использование дорогостоящих ингредиентов, что значительно повышает себестоимость изготавливаемого материала.
Наиболее близким к предлагаемому изобретению является электропроводящий полимерный композиционный материал на основе политетрафторэтилена, содержащий в качестве наполнителей: кокс, графит, ферроцен и сополимер тетрафторэтилена с гексафторпропиленом (SU 1361729 А1, 23.12.1987).
Недостатками известного материала являются низкая электропроводимость, сложность в технологии получения и высокая энергоемкость, а именно совмещение наполнителей и прессование с последующим спеканием при температурах 370+5°С.
Целью настоящего изобретения является получение электропроводящего полимерного композиционного материала с применением доступных и дешевых дополнительных ингредиентов.
Для достижения поставленной цели предлагается изменение рецептуры композита и упрощение технологии получения материала. Электропроводящий полимерный композиционный материал содержит кокс, смешанный со сверхвысокомолекулярным полиэтиленом, и резиновую смесь марки В-14 при следующем соотношении компонентов, мас.%:
Материал готовят из следующих компонентов.
Резиновая смесь марки В-14 имеет рабочие температуры -55÷120°С, разрушающее напряжение при растяжении 10-15 МПа, относительное удлинение при разрыве 160%. Состав В-14 приведен в табл.1.
Порошок сверхвысокомолекулярного полиэтилена представляет собой вещество белого цвета. Разрушающее напряжение при растяжении 22-26 МПа, относительное удлинение при разрыве 300-500%, удельное объемное сопротивление 1011-1017 Ом·м.
Кокс линейный мелкодисперсный марки КЛ-1 имеет размер частиц 10-40 мкм, коэффициент теплопроводности 0,42·10-3 Вт/м.
Введение в сырую резину марки В-14 кокса, смешанного с сверхвысокомолекулярным полиэтиленом, позволяет получить электропроводящий полимерный материал с высоким положительным температурным коэффициентом сопротивления и удельной электропроводностью, а сочетание двух полимеров разной химической природы позволяет улучшить технологические качества материала, а также улучшить физико-механические показатели, например прочность предлагаемого электропроводящего материала, обеспечивающего повышенный контакт с рабочей поверхностью и равномерное распределение тепла при обогреве криволинейных поверхностей.
Как видно из приведенного графика, введение именно смеси наполнителей кокса и сверхвысокомолекулярного полиэтилена (кривые 1 и 2) приводит к значительному во всем исследуемом диапазоне температур увеличению проводимости предлагаемой электропроводящей полимерной композиции как минимум на один десятичный порядок по сравнению с проводимостью известной композиции (кривая 3). При сравнении кривых 1 и 2 видно, что уменьшение содержания кокса с 40 (кривая 1) до 30 (кривая 2), но увеличение содержания сверхвысокомолекулярного полиэтилена с 15 до 20 и В-14 с 45 до 50 мас.% приводит к увеличению проводимости.
Пример 1. 15 г сверхвысокомолекулярного полиэтилена, предварительно высушенного при 100-120°С в течение 2 ч, просеянного через сито, смешивают в лопастном смесителе с 40 г кокса. Затем смесь порошков помещают в пресс-форму и прессуют при удельном давлении 15 МПа. Полученный монолит измельчают в вибромельнице и вводят в сырую резину марки В-14 на вальцах. Экструзию проводят при температурах: I зона - 140, II зона - 140, III зона - 145, головка 150°С, в течение 25 мин.
Исследование электрических свойств предлагаемых материалов проводят на образцах - лентах. Для определения удельного сопротивления предлагаемого электропроводящего композиционного материала к краям прижимаются металлические электроды с проводниками. Подготовленный таким образом образец подключат к цифровому омметру и помещают в термокамере, с помощью которой и производится нагрев образцов - лент. Температура образца регистрируется с помощью термопары, помещенной в образец. Результаты измерений представляют собой зависимости ρ от Т, приведенные на чертеже.
Предел прочности при растяжении определяется на лентах при комнатной температуре на испытательной машине.
Пример 2. 20 г сверхвысокомолекулярного полиэтилена, предварительно высушенного при 100-120°С в течение 2 ч, просеянного через сито, смешивают в лопастном смесителе с 30 г кокса. Затем смесь порошков помещают в пресс-форму и прессуют при удельном давлении 15 МПа. Полученный монолит измельчают в вибромельнице и вводят в сырую резину марки В-14 на вальцах. Полученную композицию экструдируют в изделие и определяют характеристики по примеру 1.
Испытания электропроводящего полимерного материала предлагаемого состава в составе греющего кабеля для обогрева водопровода из полиэтиленовой трубы ⌀ 63 мм и пенополиуретановой теплоизоляцией толщиной 30 мм показали увеличение его работоспособности, обусловленное отсутствием терморегулирующих устройств, а также гибкостью, позволяющей обеспечить равномерное распределение тепла по рабочей поверхности нагреваемого элемента.
Увеличение или уменьшение процентного содержания наполнителей значительно снижает служебные характеристики предлагаемого материала. Уменьшение содержания электропроводящего наполнителя приводит к значительному падению проводимости материала, а повышение - к снижению прочностных характеристик материала.
Высокий положительный температурный коэффициент сопротивления β (0,039 град -1) при 80-100°С, а также низкое удельное сопротивление ρ (ρ=1 Ом·м при 100°С) позволяет получить на основе предлагаемого состава электропроводящий полимерный материал для нагревательных элементов с рабочей температурой до 100°С.
Состав резиновой смеси марки В-14
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОПРОВОДЯЩЕГО ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2007 |
|
RU2365600C2 |
Электропроводящий полимерный композиционный материал для нагревательных элементов | 1986 |
|
SU1361729A1 |
Способ получения трехслойного композиционного материала на основе сверхвысокомолекулярного полиэтилена, резины и металла | 2021 |
|
RU2797809C2 |
СПОСОБ ПОЛУЧЕНИЯ УПРОЧНЕННОГО НАНОКОМПОЗИТА С ДОПОЛНИТЕЛЬНЫМИ СВОЙСТВАМИ (ВАРИАНТЫ) | 2016 |
|
RU2707344C2 |
ЭЛЕКТРОПРОВОДЯЩЕЕ ФОРМОВАННОЕ ИЗДЕЛИЕ С ПОЛОЖИТЕЛЬНЫМ ТЕМПЕРАТУРНЫМ КОЭФФИЦИЕНТОМ | 2017 |
|
RU2709631C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2011 |
|
RU2478111C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИЦИОННОГО МАТЕРИАЛА И МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ | 2008 |
|
RU2403269C2 |
КОМПОЗИЦИОННЫЙ РЕЗИНОПОЛИМЕРНЫЙ ИЗНОСОСТОЙКИЙ МАТЕРИАЛ ДЛЯ ГИДРАВЛИЧЕСКИХ УСТРОЙСТВ | 2009 |
|
RU2425850C2 |
Двухслойный композиционный материал на основе сверхвысокомолекулярного полиэтилена и эластомера | 2021 |
|
RU2780107C1 |
Поверхностно-модифицированный композиционный материал | 2015 |
|
RU2615416C2 |
Изобретение относится к области полимерного материаловедения, а именно к электропроводящим материалам с положительным температурным коэффициентом сопротивления, и может быть использовано для изготовления электронагревательных элементов, применяющихся для подогрева трубопроводов, предназначенных для транспортировки высоковязких продуктов, например нефти и нефтепродуктов. Материал по изобретению содержит, мас.%: резиновую смесь марки В-14 - 50-55, сверхвысокомолекулярный полиэтилен - 15-20, кокс - 30-35. Кокс предварительно смешан со сверхвысокомолекулярным полиэтиленом. Технический результат состоит в получении электропроводящего композиционного материала с применением доступных и дешевых ингредиентов. 1 ил., 1 табл.
Электропроводящий полимерный композиционный материал для нагревательных элементов, содержащий кокс, смешанный со сверхвысокомолекулярным полиэтиленом и резиновую смесь марки В-14 при следующем соотношении компонентов, мас.%:
Электропроводящий полимерный композиционный материал для нагревательных элементов | 1986 |
|
SU1361729A1 |
Электропроводящая полимерная композиция | 1983 |
|
SU1154295A1 |
Вулканизуемая резиновая смесь на основе карбоцепного каучука | 1980 |
|
SU896022A1 |
Способ моделирования гидронефроза | 1989 |
|
SU1700578A1 |
КОШЕЛЕВ Ф.Ф | |||
и др | |||
Общая технология резины | |||
- М.: Химия, 1978, с.504-506. |
Авторы
Даты
2009-08-27—Публикация
2007-05-02—Подача