Изобретение относится к области вакуумной техники и технологии получения углеродных наноструктур, таких как углеродные нанотрубки на кончике зонда. Они могут быть использованы в зондовой микроскопии в качестве сканирующего зонда для прецизионного сканирования, заметного улучшения контроля качества образцов и для нанолитографии.
Известен способ получения особо острых зондов, основанный на методе полевой эмиссии [1], который заключается в том, что вольфрамовые нановолокна выращивают на кончике кремниевого зонда при воздействии поля эмиссии в высоковакуумной камере, совмещенной с электронным микроскопом. Две заготовки из электрохимически травленых вольфрамовых зондов помещались на два микроманипулятора. Подача рабочего газа - вольфрамового гексарбонила при температуре 35°С и включение постоянного поля эмиссии индуцировали процесс роста вольфрамовых нановолокон на одной из заготовок зондов, выступающей в качестве катода. Длина образующегося нановолокна зависит от длительности воздействия полем. Однако известный метод плохо контролируется и не предполагает образование прочного кончика зонда с малым количеством дефектов.
Из известных способов наиболее близким по технической сущности является способ получения углеродных нанотрубок на кончике зонда путем химического осаждения паров [2], принятый за прототип. В этом способе предлагается предварительно электрохимически заточенный вольфрамовый зонд нагревать до температуры 700°С сначала в среде аргона, а потом в среде этилена. Таким образом, вся поверхность зонда покрывается множеством нанотрубок, которые после этого в основном стравливаются пучком электронов в электронном микроскопе. Хотя этот способ гарантирует образование нанотрубки на кончике зонда, однако он плохо контролируется и отличается крайней сложностью и многостадийностью.
Технический результат, направленный на снижение многостадийности и воспроизводимости результатов, заключается в напылении нанотрубок непосредственно на кончик зонда. Это достигается тем, что углеродные пленки наносят путем магнетронного распыления в вакууме при постоянном токе 100-140 мА с использованием мишени из углерода с катализатором роста нанотрубок.
Магнетронное распыление оптимально для нанесения нанотрубок на кончик зонда, поскольку обеспечивает локальность распыления и роста нанотрубок. Необходимым условием распыления является высокий вакуум, что обеспечивает бездефектность образующихся нанотрубок. При подаче тока менее 100 мА распыление слабое и нанотрубки не образуются, а при подаче тока более 140 мА происходит интенсивное распыление, качество углеродных пленок, и соответственно нанотрубок, падает.
Данный способ был реализован с помощью научно-исследовательской вакуумной установки УРМ-3 [3].
На фиг.1 изображена схема экспериментальной установки, состоящей из вакуумной камеры 1, магнетронного узла с мишенью 2, держателя образцов 3 и пластины с зондами 4. В качестве мишени использовался диск из чистого графита для стержней реакторов с металлическими катализаторами Y, Ni (иногда Со, Fe). Площади поверхностей составных частей мишени соотносились как C:Y:Ni=94:5:1. После предварительной откачки в камеру напускался рабочий газ - аргон. В качестве заготовок зондов использовалась платино-иридиевая, вольфрамовая и золото-коваровая проволока. Проволока, разрезанная на части длиной 2-3 см, закреплялась в держателе образцов на расстоянии 3-5 см над мишенью.
Эти заготовки зондов помещались в вакуумную установку. Далее проводилось напыление углерода в остаточной атмосфере инертного газа. Электрический режим разряда: постоянный ток питания мишени 100-140 мА, напряжение разряда 150-400 В.
Полученные зонды с нанотрубками исследовались на растровом электронном микроскопе (РЭМ), а также проводилось сравнительное тестирование с зондами без нанотрубок на сканирующем туннельном микроскопе (СТМ).
Методом РЭМ были исследованы кончики зондов - на большинстве зондов были обнаружены нанотрубки диаметром от 10 нм, расположенные перпендикулярно к поверхности зонда. На фиг.2 представлено РЭМ-изображение кончика платиново-иридиевого зонда с увеличением в 170 раз. При большем увеличении в 30 000 раз (фиг.3) на кончике зонда были обнаружены нанотрубки диаметром ~30 нм.
По результатам сравнительного тестирования полученных зондов и зондов без нанотрубок была подтверждена высокая разрешающая способность зондов с нанотрубками вплоть до атомарного разрешения. На фиг.4 представлено СТМ-изображение кристаллической решетки высокоориентированого пиролитического графита, полученное платиново-иридиевым зондом с нанотрубкой.
Так же с помощью СТМ-метода была показана пригодность зондов с нанотрубками для проведения нанолитографии (фиг.5а) - диаметр образующихся каналов 20 нм и менее (фиг.5б).
На фиг.6 приведены результаты сканирования обычным платино-иридиевым зондом (фиг.6а) и платино-иридиевым зондом с нанотрубкой (фиг.6б) тестового образца из DVD-диска. Хорошо видно, что на фиг.6б прописаны все области с высоким разрешением, поскольку малый диаметр нанотрубки позволяет проникать даже в области между дорожками DVD-диска, а малая величина закругления кончика нанотрубки обеспечивает высокое разрешение в каждой точке сканирования. Следовательно, зонд с нанотрубкой обеспечивает на порядок лучший контроль качества образцов по сравнению с обычными зондами.
Таким образом, предлагаемый способ позволяет получать зонды с углеродными нанотрубками диаметром от 10 нм и расположенными перпендикулярно поверхности зонда в необходимых количествах без использования взрывоопасных веществ (углеводородов и т.п.) и сложных установок. Помимо этого получаемые зонды отличаются прочностью, малодефектностью и износостойкостью.
Список литературы:
[1] А.В.Н. Тау, J. Т. L. Thong «Fabrication of super-sharp nanowire atomic force microscope probes using a field emission induced growth techniques». // Review of scientific instruments, v. 75, №10 (2004), 3248-3255.
[2] Y. Shingaya, T. Nakayama, M. Aono «Carbon nanotube tip for scanning tunneling microscopy». // Physica B, 323 (2002), 153-155.
[3] Антоненко С. В., Мальцев С.Н., RU 2218299 С1, 17.07.2002.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР | 2007 |
|
RU2355625C1 |
НАНОСТРУКТУРА, ПРЕДШЕСТВЕННИК НАНОСТРУКТУРЫ И СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРЫ И ПРЕДШЕСТВЕННИКА НАНОСТРУКТУРЫ | 2006 |
|
RU2406689C2 |
Способ создания квантовых точек для элементной базы радиотехники | 2020 |
|
RU2753399C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2002 |
|
RU2218299C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2005 |
|
RU2294892C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ И МОДИФИКАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КАТАЛИЗАТОРОВ НА УГЛЕРОДНОМ НОСИТЕЛЕ | 2015 |
|
RU2595900C1 |
СПОСОБ МОДИФИКАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КАТАЛИЗАТОРОВ НА УГЛЕРОДНОМ НОСИТЕЛЕ | 2012 |
|
RU2495158C1 |
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ОСТРИЯ ИГЛЫ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА | 2006 |
|
RU2308414C1 |
УГЛЕРОДНОЕ НАНОВОЛОКНО И СПОСОБ ПОЛУЧЕНИЯ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК | 2014 |
|
RU2567628C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО МАТЕРИАЛА ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА | 2009 |
|
RU2421849C1 |
Изобретение относится к области вакуумной техники и технологии получения углеродных наноструктур, таких как углеродные нанонотрубки на кончике зондов, которые применяются в зондовой микроскопии для прецизионного сканирования. Способ получения зондов с углеродными нанотрубками осуществляется путем нанесения углеродных пленок с нанотрубками методом магнетронного распыления в вакууме при постоянном токе 100-140 мА с использованием мишени из углерода с катализатором роста нанотрубок. Заготовки зондов помещают в вакуумную установку. Далее проводится напыление углеродной пленки с нанотрубками в остаточной атмосфере инертного газа. Изобретение позволяет получать зонды с углеродными нанотрубками, расположенными перпендикулярно поверхности зонда, в необходимых количествах, без использования взрывоопасных веществ и сложных установок. 6 ил.
Способ получения зондов с углеродными нанотрубками, заключающийся в нанесении углеродных пленок с нанотрубками на кончик зонда, отличающийся тем, что углеродные пленки наносят путем магнетронного распыления в вакууме при постоянном токе 100-140 мА с использованием мишени из углерода с катализатором роста нанотрубок.
Y | |||
Shingaya at all | |||
«Carbon nanotube tip for scanning tunneling microscopy» | |||
Physica, B, 323 (2002), p.153-155 | |||
ЗОНД ДЛЯ СКАНИРУЮЩЕЙ МИКРОСКОПИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2266574C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2002 |
|
RU2218299C1 |
СИЛОВОЙ ЗОНД НА ОСНОВЕ КВАРЦЕВОГО РЕЗОНАТОРА | 2003 |
|
RU2251071C2 |
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ОСТРИЯ ИГЛЫ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА | 2006 |
|
RU2308414C1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2009-10-10—Публикация
2008-04-08—Подача