Изобретение относится к области модификации свойств сверхтвердых материалов, а именно к обработке детонационного углерода (шихта детонационного углерода, содержащая ультрадисперсные наноалмазы), получаемого методом детонационного синтеза при взрыве твердых углеродсодержащих взрывчатых веществ с отрицательным кислородным балансом, и может найти применение в получении ультрадисперсных алмазов высокой чистоты.
Исследованиям углеродных наноструктур в рамках развития новых нанотехнологий в последнее время уделяется достаточно много внимания. Среди различных синтезируемых углеродных структур следует выделить т.н. ультра дисперсные наноалмазы (УДА), получаемые методом детонационного синтеза при детонации твердых углеродсодержащих взрывчатых веществ [А.И.Лямкин, Е.А.Петров, А.П.Ершов, Г.В.Сакович, А.М.Ставер, В.М.Титов. Докл. АН, 1988. 302, 611]. Несмотря на высокую производительность такого способа получаемый продукт - детонационная сажа или углерод содержит различные структуры и формы углерода, среди которых содержание алмазной фазы составляет лишь 35-45 мас.%. Более того, в зависимости от технологии получения [O.A.Shenderova V.V.Zhirnov D.W.Brenner. Carbon nanostructures. In Critical Reviews in Solid State and Materials Sciences. 2002. 27. 3/4 / P.227-356; В.Ю.Долматов. Ультрадиспесные алмазы детонационного синтеза: свойства и применение. Успехи химии. 2001, 70, 7. 687-708], в детонационной саже могут содержаться сорбированные примеси в виде металлов, оксидов и карбидов.
Для выделения алмазной фазы или УДА исходную шихту, как правило, обрабатывают жидкими или газообразных окислителями. В качестве жидких окислителей используют смеси серной и азотной кислот, сернистый и хромовый ангидрид [В.Ю.Долматов. Ультрадиспесные алмазы детонационного синтеза: свойства и применение. Успехи химии. 2001, 70, 7. 687-708]. Кислород и озон применяются также в качестве газообразного термоокислителя. В практике наибольшее применение получил метод обработки шихты с использованием концентрированной азотной кислоты в термобарических условиях - в автоклаве при повышенном давлении и температуре. Такой метод позволяет окислять неалмазный углерод и удалять металлы, их окислы и некоторые другие примеси. Очищенный таким методом порошок может содержать до 90-97 мас.% различных форм наноалмазов и 3-10 мас.% неалмазного углерода, и других примесей.
К основным недостаткам известных методов химической и механической очистки с использованием сильных кислот и окислителей следует отнести выделение большого количества агрессивных отходов, а также окисление самой алмазной фазы.
Известен способ удаления неалмазного углерода [РФ №2132816, C01B 31/06, B01J 3/04, 10.07.99], в котором очистка алмазосодержащей шихты проводится при ее нагреве до температуры 320-400°С с нитратом калия в течение 30 мин. Недостатком такого способа очистки является наличие в обработанном образце оксида калия (температура плавления которого 740°С), являющегося продуктом разложения нитрата калия.
Известен способ выделения ультрадисперсных алмазов, принятый нами за прототип [РФ №2109683, C01B 31/06, 27.04.1998], в котором очистка алмазосодержащей шихты от различных примесей и выделение ультрадисперсных алмазов осуществляется в результате двухстадийной обработки водным раствором азотной кислоты при высоких температурах и давлениях.
К главному недостатку прототипа следует отнести применение сильных кислот и, как следствие, наличие вредных отходов в виде кислот.
Предлагаемое изобретение решает задачу эффективного удаления неалмазных фаз углерода и обработки детонационного углерода без применения и образования вредных, токсичных соединений и веществ.
Технический результат - модификация поверхности наночастиц конденсированной углеродной фазы, содержащей ультрадисперсные алмазы, удаление и разложение неалмазных углеродных структур, создание экологически чистой безотходной технологии.
Задача решается двумя вариантами способа обработки детонационного углерода.
По первому варианту обработку детонационного углерода осуществляют в сверхкритической воде (СКВ).
По второму варианту обработку детонационного углерода осуществляют в сверхкритической воде (СКВ) с добавлением пероксида водорода.
Многие вещества в сверхкритическом состоянии являются эффективной реакционной средой для различных химических превращений и проявляют необычные свойства, что дает возможность при вариации температуры, давления и времени пребывания с высокой скоростью проводить химические реакции. Среди сверхкритических растворителей наибольшее внимание исследователей уделяется воде (Ркр=22 МПа, Ткр≈374°С) в связи с тем, что сверхкритическая вода - СКВ - это многокомпонентная среда, состоящая как из слабовзаимодействующих полярных молекул H2O, так и наночастиц конденсированной фазы - нейтральных и заряженных кластеров (H2O)n, H+(H2O)i, OH-(H2O)j. Свойства сверхкритического флюида воды зависят от плотности, температуры, состава и концентрации примесей, а также могут меняться при внешнем воздействии, например, силовых полей, гидродинамических возмущений. Константа диссоциации воды вблизи критической точки в три раза больше константы для воды в ее нормальном состоянии и, следовательно, вблизи критической точки имеется значительно большая концентрация ионов H3O+ и OH-, чем для воды в ее нормальных или докритических условиях. Следовательно, вода в этом состоянии может проявлять свойства кислотного и основного катализа. Но, следует еще подчеркнуть, что такие свойства сохраняются только вблизи критической точки. Среди химических реакций, осуществляемых в СКФ, наибольшее практическое применение сегодня находят окислительные реакции, проводимые в сверхкритической воде.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Обработка образцов детонационного углерода в сверхкритической воде.
В реактор-автоклав объемом 45 см3 с электроподогревом и перемешиванием помещают образец шихты с водой и нагревают при перемешивании до температуры эксперимента 390°С (+/-5), давления - 285(+/-5) атм. После установления температуры и давления, соответствующей переходу воды в сверхкритическое состояние, процесс продолжают от 4 до 6 ч. После охлаждения реактора измеряют давление и газовый объем продуктов реакции, причем последний увеличивается по сравнению с исходным в 1.5-2 раза, что свидетельствует об окислении углеродсодержащей фазы. Около
80 об.% образовавшихся газов составляет CO2, кроме того, в продуктах реакции наблюдается некоторое количество CO, CH4, H2. Наблюдается потеря массы исходной шихты, что свидетельствует о существенном окислении углеродной составляющей шихты при проведении процесса в СКВ.
Исследования твердой фазы до и после обработки в СКВ проводят методами электронной (HRTEM), (SEM) микроскопии, а также методом рентгено-фазового анализа (XRD). С использованием хроматографии анализируют состав образовавшихся газовых продуктов реакции, измеряют также их объем.
Результаты рентгенофазового анализа
Анализ дифракционных спектров обработанных в СКВ образцов показывает, что отношение интегральных интенсивностей пиков (ID/IG) для этого типа обработки зависит от времени процесса и увеличивается от начального значения 0.8 до величины 1.1-1.3.
Результаты HRTEM анализа.
На Фиг.1 представлены HRTEM снимки детонационного углерода после обработки в СКВ. Сравнение снимков шихты исходного образца детонационного углерода со снимками, полученными после обработки в сверхкритической воде (Фиг.1), демонстрируют значительное отличие последних. Во-первых, значительно уменьшилось количество аморфной фазы углерода, во-вторых, увеличилась концентрация углерода кубической модификации.
Пример 2. Обработка образцов детонационного углерода в сверхкритической воде в присутствии перекиси водорода.
В реактор-автоклав объемом 45 см3 помещают образец шихты с водой и нагревают при перемешивании до температуры 300°С, затем при помощи шприцевого насоса вводят в реактор под давлением 30% водный раствор перекиси водорода в количестве, обеспечивающем стехиометрическое соотношение кислорода, образовавшегося в результате разложения перекиси водорода (на один моль H2O2 - 0.5 моля O2), с неалмазным углеродом, содержащемся в исходном образце шихты.
После установления стационарной температуры 390°С (+/-5) и давления -285(+/-5) атм процесс продолжают от 4 до 6 ч. Обработанный в СКВ в присутствии кислорода, образовавшегося при разложении перекиси водорода, образец детонационного углерода изменяет цвет с черного на серый. Объем выделившегося газа с учетом не вступившего в реакцию кислорода превышает более чем в 8 раз начальный свободный объем реактора.
Результаты рентгенофазового анализа.
Отношения интегральных интенсивностей для обработанных в СКВ в присутствии кислорода образцов детонационного углерода значительно изменяются в сторону увеличения доли алмаза и равняются для образцов ID/IG=1.35-1.86, что соответствует 65-75 мас.% алмазной фазы.
Результаты HRTEM анализа.
На Фиг.2 представлены HRTEM снимки детонационного углерода после обработки в СКВ в присутствие продуктов разложения перекиси водорода. Анализ HRTEM снимков образцов детонационного углерода после его обработки в сверхкритической воде с участием продуктов разложения перекиси водорода показал, во-первых, высокую степень очистки. Фиг.2, во-вторых, практическое отсутствие аморфной фазы углерода и углерода луковичной структуры и, в-третьих, размер алмазного ядра не изменяется, т.е. алмазная фаза не окисляется.
Примеры демонстрируют, что наиболее сильное превращение неалмазной фазы углерода наблюдается при обработке шихты в СКВ, содержащей продукты разложения перекиси водорода. Установлено, что при обработке детонационного углерода в сверхкритических водных растворителях не происходит окисление алмазного ядра.
Как видно из текста и примеров, изобретение решает задачу модификации поверхности наночастиц конденсированной углеродной фазы, содержащей ультрадисперсные алмазы, удалению и разложению неалмазных структур, создания экологически чистой безотходной технологии.
название | год | авторы | номер документа |
---|---|---|---|
НАНОАЛМАЗ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2005 |
|
RU2348580C1 |
УГЛЕРОДСОДЕРЖАЩАЯ НАНОЧАСТИЦА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2009 |
|
RU2424185C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗ-УГЛЕРОДНЫХ НАНОЧАСТИЦ | 2008 |
|
RU2384523C2 |
АЛМАЗ-УГЛЕРОДНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2005 |
|
RU2359902C2 |
СПОСОБ ПОЛУЧЕНИЯ СТАБИЛЬНОЙ СУСПЕНЗИИ ДЕТОНАЦИОННЫХ НАНОАЛМАЗОВ | 2008 |
|
RU2384524C2 |
ИНИЦИИРУЮЩИЙ ВЗРЫВЧАТЫЙ СОСТАВ | 2004 |
|
RU2309139C2 |
Способ детонационного синтеза наноалмазов | 2017 |
|
RU2676614C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОАЛМАЗОВ | 2003 |
|
RU2230702C1 |
СПОСОБ ОЧИСТКИ УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ | 2002 |
|
RU2244679C2 |
Способ функционализации поверхности детонационных наноалмазов | 2015 |
|
RU2676975C2 |
Изобретение относится к области модификации свойств сверхтвердых материалов и может быть использовано при получении ультрадисперсных алмазов высокой чистоты. Детонационный углерод обрабатывают в сверхкритической воде или в сверхкритической воде с добавлением перекиси водорода. Технический результат - модификация поверхности наночастиц конденсированной углеродной фазы, содержащей ультрадисперсные алмазы, удаление и разложение неалмазных углеродных структур, создание экологически чистой безотходной технологии, 2 н.п. ф-лы, 2 ил.
1. Способ обработки детонационного углерода, отличающийся тем, что его обработку осуществляют в сверхкритической воде.
2. Способ обработки детонационного углерода, отличающийся тем, что его обработку осуществляют в сверхкритической воде с добавлением пероксида водорода.
СПОСОБ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ | 1996 |
|
RU2109683C1 |
СПОСОБ ОЧИСТКИ УЛЬТРАДИСПЕРСНОГО АЛМАЗА ОТ НЕАЛМАЗНОГО УГЛЕРОДА | 1997 |
|
RU2132816C1 |
ВЕРЕЩАГИН А.Л | |||
Детонационные наноалмазы | |||
- Барнаул, 2001, с.43 | |||
ДОЛМАТОВ В.Ю | |||
Ультрадисперсные алмазы детонационного синтеза: свойства и применение | |||
- Успехи химии, 2001, т.70, №7, с.689 | |||
ЕРЕМЕНКО А.Н | |||
Ультрадисперсные алмазы детонационного синтеза: химическая очистка и физико-химические |
Авторы
Даты
2009-11-10—Публикация
2008-05-12—Подача