СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛИЧЕСКОЙ ДРОБИ Российский патент 2009 года по МПК C21D9/36 C21D1/613 C21D1/20 

Описание патента на изобретение RU2372409C2

Изобретение относится к литейному производству и металлургии и имеет целью получение металлической дроби повышенного качества, имеющей высокие значения разрушающей нагрузки при испытаниях на сжатие и микротвердость.

Применение металлической дроби весьма широко. По данным работы [1] металлическая дробь различных марок применяется в металлургии и литейном производстве для дробеметной и дробеструйной очистки различных изделий, в том числе отливок, и для поверхностного упрочнения деталей, в сварочном - как гранулированный присадочный материал, в материаловедении - как армирующий композиционный материал для получения высокопрочных изделий методом горячего изостатического прессования, в атомной энергетике - для биологической защиты, в промышленности строительных материалов - для резки и шлифовки камня и.т.д.

Однако наибольшее применение металлическая дробь получила для дробеструйной очистки отливок, поверхностного упрочнения деталей и для буровых работ.

Для литой металлической дроби характерен большой разброс механических свойств и структуры. Так, при исследовании стальной литой дроби диаметром 2,0 мм с содержанием углерода 1,1% было показано, что значения разрушающей нагрузки при испытании на сжатие изменяются от 100 до 400 кг, а значения микротвердости находятся в пределах 450-750 HV [2]. Микроструктура стальной литой дроби может меняться от полностью мартенситной с большим количеством остаточного аустенита до полностью бейнито-троститной, однако всегда оставаясь грубозернистой.

Применение дополнительной термической обработки (закалка и отпуск) (дробь стальная литая улучшенная) существенно улучшает свойства литой дроби и ее структуру. Известны способы термической обработки металлической литой дроби, заключающиеся в нагреве дроби для аустенитизации, закалке в воду или масло и отпуске, причем нагрев под закалку и отпуск осуществлялся в электрических конвективных печах [1, 3].

Способ, описанный в работе [1], взят в качестве прототипа и заключается в нагреве дроби в электрической конвективной печи барабанного типа, закалке в воду или масло и отпуске также в электрической конвективной печи. Время нахождения дроби в печи аустенитизации и печи отпуска зависит от массы дроби, обрабатываемой за один цикл термической обработки, и по данным [1, 3] может меняться от 30-60 мин до 2,0-2,5 ч.

К недостаткам прототипа относится большое время нахождения дроби в печах аустенитизации и, особенно, в печи отпуска и связанное с этим окисление дроби, большие энергозатраты на термическую обработку дроби.

Задачей изобретения является сокращение времени, затрачиваемого на термообработку, и соответственно уменьшение энергозатрат, сокращение технологического цикла термообработки, улучшение качества дроби, уменьшение разброса свойств дроби.

Указанная задача решается тем, что в известном способе термической обработки литой металлической дроби, включающем нагрев дроби до температуры аустенитизации и последующую закалку, нагрев дроби для аустенитизации и закалку осуществляют за один цикл в псевдоожиженном слое, причем применяют изотермическую закалку, температуру которой регулируют в пределах 150…500°С в зависимости от требуемых свойств дроби.

Таким образом, двойная термическая обработка аустенитизация - закалка - отпуск заменяется одинарной термической обработкой аустенитизация - изотермическая закалка. В этом случае достигается значительное сокращение времени нахождения дроби в печи аустенитизации (в 2 и более раза) в зависимости от массы дроби [4]. Это связано с высоким коэффициентом теплообмена в псевдоожиженном слое, в связи с чем скорость нагрева или охлаждения изделий в псевдоожиженном слое значительно больше, чем в газовых конвективных печах. Оптимальную скорость псевдоожижения, при которой коэффициент теплоотдачи достигает максимального значения, можно приблизительно оценить по формуле [5]

ωопт=VcAr/[d(18+5,22√Аr)],

где ωопт - оптимальная скорость псевдоожижения;

Vc - вязкость псевдоожиженной среды;

d - диаметр частиц;

Аr - число Архимеда.

Сокращение времени нахождения дроби в печи аустенитизации позволяет также уменьшить обезуглероживание и окисление поверхности дроби. Применение кипящего слоя для изотермической закалки позволяет в широких пределах варьировать структуру и свойства дроби, в зависимости от ее назначения и требуемых физико-механических свойств. При этом псевдоожиженный слой для изотермической закалки имеет неоспоримые преимущества по сравнению с расплавами солей, так как закалка в расплавах солей приводит к выносу соли, к необходимости ее удаления, ухудшает экологию, а также приводит к коррозии металла. Отметим, что в технологическом цикле получения литой металлической дроби имеются данные о применении псевдоожиженного (кипящего) слоя для сушки дроби после распыления жидкого металла струей воды или газа и охлаждения в бассейне с водой [6].

В качестве примера были проведены испытания твердости по Виккерсу двух партий стальной литой дроби с содержанием углерода 0,68-0,7, дополнительно содержащих 0,24% W (У7В) и 0,15% V (У7Ф). Нагрев и охлаждение образцов проводили в однотипных лабораторных установках кипящего слоя с размерами рабочей зоны 0,3×0,6×0,7 м. Псевдоожижение осуществляли продувкой газовоздушной смеси и сжиганием природного газа в слое электрокорунда с частицами 320 мкм. Изотермическая закалка проводилась в слое с частицами 120 мкм.

После аустенитизации при 860°С образцы подвергали изотермической закалке в псевдоожиженном слое в течение 30 мин при различных температурах.

Значения твердости (HV) по Виккерсу после изотермической закалки в псевдоожиженном слое приведены в таблице. На каждый режим изотермической закалки брали по 20 образцов.

Таблица Марка стали Микротвердость HV при различных температурах изотермической закалки 250°С 275°С 300°С 325°С У7В - 587-605 502-534 334-327 У7Ф 551-606 534-598 484-587 285-320

Структура всех образцов дроби, прошедших изотермическую закалку, представляла собой тонкопластинчатую феррито-карбидную смесь.

Источники информации

1. Затуловский С.С., Мудрук Л.А. Получение и применение металлической дроби. М., Металлургия. 1988, 183 с. (прототип).

2. Грачев С.В., Мальцева Л.А., Жуйков О.В., Гвоздовский В.П., Шляпников С.Н., Емельянов А.Ф. Получение и свойства стальной литой дроби высокой прочности. Известия вузов, Нефть и газ, №1, 2006, с.93-97.

3. Ефимов Д.Т., Фролов Н.Г. Металлическая дробь и песок. М., Машгиз, 1963, с.144.

4. Заваров А.С., Баскаков А.П., Грачев СВ. Термическая обработка в кипящем слое. М., Металлургия, 1981, с.84.

5. Тодес О.М., Бондарева А.И. В кн. Тепломассоперенос, т.V.М., Энергия, 1965, с.45-54.

6. Авторское свидетельство SU 1034838, кл. 5 В22F 9/06, 1983.

Похожие патенты RU2372409C2

название год авторы номер документа
СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2011
  • Ефимов Валерий Николаевич
  • Павлов Евгений Александрович
  • Мамонов Сергей Николаевич
RU2482203C1
СПОСОБ НЕПРЕРЫВНОЙ ТЕРМООБРАБОТКИ ДЛИННОМЕРНЫХ СТАЛЬНЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Крылов Владимир Степанович
  • Чернов Сергей Валентинович
  • Крылов Сергей Владимирович
  • Сивак Борис Александрович
  • Классен Эдгар Яковлевич
RU2087555C1
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
Способ термической обработки заготовок 1985
  • Астащенко Владимир Иванович
  • Янцен Гарри Иванович
  • Ивановский Сергей Владимирович
SU1301856A1
Способ термической обработки литых сталей 2015
  • Астащенко Владимир Иванович
  • Швеёв Андрей Иванович
  • Швеёва Татьяна Владимировна
  • Халиков Ильдар Наилевич
  • Новиков Евгений Евгеньевич
RU2617185C2
Способ химико-термической обработки прецизионных деталей 1990
  • Деев Виктор Александрович
  • Горячев Сергей Николаевич
  • Буйлов Валерий Николаевич
  • Петряков Владимир Константинович
SU1721103A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИТЫХ ДЕТАЛЕЙ ИЗ НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ СТАЛЕЙ 2015
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Назаратин Владимир Васильевич
  • Повеквечных Сергей Алексеевич
  • Лазарев Виктор Васильевич
RU2672718C2
Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой 2018
  • Костылева Людмила Венедиктовна
  • Гапич Дмитрий Сергеевич
  • Моторин Вадим Андреевич
  • Грибенченко Алексей Викторович
RU2681076C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ЗАГОТОВОК 2012
  • Астащенко Владимир Иванович
  • Швеёв Андрей Иванович
  • Швеёва Татьяна Владимировна
  • Родькин Илья Михайлович
  • Сафаров Дамир Тамасович
RU2532874C2
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2022
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Ульянов Андрей Георгиевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Лоханов Дмитрий Валерьевич
  • Благовещенский Сергей Иванович
  • Никляев Андрей Викторович
  • Пышминцев Игорь Юрьевич
  • Выдрин Александр Владимирович
  • Черных Иван Николаевич
  • Корсаков Андрей Александрович
RU2798642C1

Реферат патента 2009 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛИЧЕСКОЙ ДРОБИ

Изобретение относится к области металлургии и литейному производству. Техническим результатом изобретения является упрощение технологического цикла получения и термообработки литой металлической дроби, сокращение времени термообработки, снижение энергозатрат и улучшение качества металлической дроби. Для достижения технического результата осуществляют нагрев дроби до температуры аустенитизации и последующую закалку за один цикл в псевдоожиженном слое, причем применяется изотермическая закалка, температура которой регулируется в пределах в 150-500°С в зависимости от назначения дроби. При этом в цикле термической обработки исключается операция отпуска. 1 табл.

Формула изобретения RU 2 372 409 C2

Способ термической обработки стальной литой дроби, включающий нагрев дроби до температуры аустенитизации и последующую закалку, отличающийся тем, что осуществляют изотермическую закалку дроби при 150-500°С, при этом нагрев и изотермическую закалку проводят за один цикл в псевдоожиженном слое.

Документы, цитированные в отчете о поиске Патент 2009 года RU2372409C2

ЗАТУЛОВСКИЙ С.С., МУДРУК Л.А
Получение и применение металлической дроби
- М.: Металлургия, 1988, с.183
Чугун 1974
  • Волощенко Михаил Васильевич
  • Кусепов Ануарбек Кусепович
  • Краля Василий Дмитриевич
  • Затуловский Сергей Семенович
  • Денисевич Регина Аполлинарьевна
  • Кириевский Борис Абрамович
SU473764A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ 0
SU177439A1
Способ изотермической закалки стали 1979
  • Петер Листеманн
  • Вальтер Ритт
  • Райнхольд Жалац
  • Ханс-Дитер Сегецци
SU1232147A3
Способ закалки стальных изделий 1986
  • Халатов Артем Артемович
  • Лисовой Владимир Александрович
  • Кобаско Николай Иванович
SU1375661A1
Способ закалки стальных изделий 1986
  • Панков Борис Васильевич
  • Нагорнов Станислав Александрович
  • Кузьмин Сергей Николаевич
  • Черепенников Иван Алексеевич
  • Лысенко Козьма Васильевич
SU1446172A1

RU 2 372 409 C2

Авторы

Грачев Сергей Владимирович

Мальцева Людмила Алексеевна

Жуйков Олег Владимирович

Гвоздовский Владимир Петрович

Шляпников Сергей Николаевич

Воронцов Василий Иванович

Орловский Станислав Валерьевич

Даты

2009-11-10Публикация

2006-08-28Подача