Изобретение относится к способам получения полимеров с электропроводящими свойствами, которым в последнее время уделяется все больше внимания, поскольку сфера применения этих соединений постоянно расширяется, открывая возможность для создания новых технологий в области оптически активных систем, каталитических систем, оптоэлектронных устройств, химических сенсоров и т.д.
Известен способ получения электроактивных полимеров, в композицию которого входит большое число сопряженных полимеров, таких как полиацетилен, полианилин, полифениленвинилены, политиофен и полипиррол и их замещенные производные и др. Перечисленные полимеры являются жесткоцепными, а следовательно, имеют низкую растворимость практически во всех растворителях. Это обстоятельство создает трудности в их исследовании и практическом применении. В частности формование пленок из этих полимеров представляется затруднительным [Handbook of Conducting Polymers, 3-rd Ed., Ed. By T.A.Skotheim, J.R.Reynolds. N.Y. 2007]. Для улучшения растворимости вышеуказанных полимеров в них вводят солюбилизирующие заместители, чаще всего алифатические или оксиалкиленовые группы, однако, это ухудшает электрофизическкие характеристики полимеров, а также существенно усложняет и удорожает их многоступенчатый синтез.
Известно также, что основания Шиффа (иначе называемые салицилиденазометиновые производные аминов) образуют устойчивые комплексы с переходными и редкоземельными металлами. В результате электрохимической полимеризации этих низкомолекулярных комплексов на электроде осаждаются нерастворимые полимерные пленки. [Magda Martins, Miguel Vilas Boas, Baltazar de Castro, Robert Hillman, Cristina Freire. Spectroelectrochemical characterisation of copper salen-based polymer-modified electrodes // Electrochimica Acta 51 (2005) 304-314] Данный способ является, по мнению заявителя, наиболее близким по технической сущности.
Технической задачей и результатом предлагаемого способа является создание полимеров, сочетающих свойства металлов (электроактивность, термостойкость) с преимуществами полимеров (низкая плотность, легкость получения и переработки, хорошая растворимость, пленкообразующие свойства), т.е. создание полимеров с приемлемыми технологическими свойствами.
Для решения указанной задачи заявитель использовал полимеры нового класса - металлсодержащие полимеры с неклассическим сопряжением, а именно металлсодержащие полисалицилиденазометины (МСПА). Для их получения использован метод поликонденсации эквимолекулярных количеств дисалицилиденовых производных ароматических диаминов с металлсодержащими соединениями, такими как ацетаты или ацетилацетонаты двухвалентных металлов (металл - Mn, Со, Cu, Fe, Cd, Ni, Zn и др.), т.е. соединения, содержащие легко «уходящие» группы.
Поликонденсацию проводили в течение 3-4 часов при 80-100°С в круглодонных трехгорлых колбах в токе аргона или азота преимущественно в растворе диметилформамида (ДМФА), иногда в диоксане. Выбор в качестве среды для поликонденсации растворителей, растворимых в воде, был обусловлен тем обстоятельством, что это позволяет высаживать полимеры в воду и промывать их водой для удаления следов не прореагировавших соединений металлов.
Во всех случаях выход полимеров оказался практически количественным и составлял 86-97%. Все синтезированные полимеры не плавятся до 300°С, а выше этой температуры начинается их термодеструкция. Можно полагать, что деструкция начинается с разложения азометиновых групп, поскольку в молекулах полимеров они являются наиболее лабильными.
То обстоятельство, что все полимеры, кроме полимера на основе дисалицилиденового производного 3,3'-диметил-4,4'-бензидина, растворимы в ДМФА и свидетельствует о том, что они не являются сшитыми продуктами.
Варьирование природы исходного ароматического диамина позволяет регулировать растворимость синтезитруемых МСПА, т.е. изменять их способность растворяться и переходить от нерастворимых полимеров к растворимым в таких растворителях, как диоксан и тетрагидрофуран или даже в низших спиртах до растворимости в амидных растворителях, таких как диметилформамид, N-метилпирролидон, N,N-диметилацетамид, а также в гексаметилфосфортриамид.
Исследование свойств полученных по данному способу полимеров показало, что полимеры, содержащие в своей структуре комплексы оснований Шиффа с металлами, обладают хорошими физико-химическими свойствами, они сочетают в себе электрические и оптические свойства металлов, а также термостойкость к высоким температура с преимуществами органических веществ, такими как низкая плотность, относительно легкий синтез и обработка, способность к пленкообразованию и растворению в органических растворителях. Это позволяет характеризовать их как проводящие соединения с приемлемыми технологическими свойствами. Так, пленки, отлитые из растворов МПСА в органических растворителях, обладают хорошей адгезией к различным субстратам и представляют собой фоточувствительные и электроактивные материалы.
Способ поясняется примерами его осуществления
Пример 1. 1,20 г (1.688 ммолей) г дисалицилиденнафтионата кобальта и 0,41 г (1.688 ммолей) Mn(СН3СОО)2·4Н2О в 15 мл ДМФА перемешивали в токе аргона при 80°С в течение 3 ч. Охлажденную реакционную смесь выливали в ~100 мл дистиллированной воды, осадок несколько раз промывали водой, сушили на воздухе, а затем последовательно промывали ацетоном и серным эфиром. Выход полимера в виде коричневого порошка 96%, полимер имеет [η] 0.28 (ДМФА, 20°С).
Пример 2. Поликонденсацию 1,28 г (1.800 ммолей) дисалицилиденнафтионата кобальта и 0.40 г (1.800 ммолей) Cu(СН3СОО)2·Н2О осуществляли по методике получения примера 1. Выход полимера в виде серо-коричневого порошка 94%, полимер имеет [η] 0.31 (ДМФА, 20°С).
Пример 3. Поликонденсацию 1.05 г (1.477 ммолей) дисалицилиденнафтионата кобальта и 0.40 г (1.477 ммолей) Со(СН3СОО)2·4Н2О осуществляли при 50°С по методике получения примера 1. Выход полимера в виде красновато-коричневого порошка 62%, полимер имеет [η] 0.14 (ДМФА, 20°С).
Пример 4. Поликонденсацию 0.68 г (1.884 ммолей) 4-нитро-1,3-фенилендиаминосалицилидена и 0.461 г (1.884 ммолей) Mn(СН3СОО)2·4Н2О осуществляли при 85°С по методике получения примера 1. Выход полимера в виде оранжево-коричневого порошка 92%, полимер имеет [η] 0.31 (ДМФА, 20°С).
Пример 5. Поликонденсацию 0.78 г (1.857 ммолей) 4-фенилаза-1,3-фенилендиаминосалицилидена и 0.462 г (1.857 ммолей) Ni(CH3COO)2·4Н2О осуществляли при 90°С по методике получения примера 1. Выход полимера в виде красного порошка 92%, полимер имеет [η] 0.30 (ДМФА, 20°С).
Пример 6. Поликонденсацию 0.81 г (1.286 ммолей) 2,6-дисалицилидендендиаминопиридина и 0.26 г (1.286 ммолей) Cu(СН3СОО)2·4Н2О осуществляли при 100°С по методике получения примера 1. Выход полимера в виде черного порошка 95%, полимер имеет [η] 0.27 (ДМФА, 20°С).
Пример 7. Поликонденсацию 0.54 г (1.286 ммолей) дисалицилиден-3,3'-диметил-4,4'-бензидина и 0.26 г (1.286 ммолей) Cu(СН3СОО)2·4Н2О осуществляли при 100°С по методике получения примера 1. Выход полимера в виде темно-желтого порошка 89%, полимер не растворим в ДМФА и других амидных растворителях, что, вероятно, является следствием структурной жесткости дисалицилиденового фрагмента.
Пример 7 демонстрирует зависимость растворимости полимеров от химической структуры диаминов, использованных для синтеза мономерных дисалицилиденовых производных.
Данные Примера 3 показывают, что снижение температуры поликонденсации до 50°С уменьшает выход полимера и несколько понижает его характеристическую вязкость.
Данные по синтезу сведены в Таблицу.
Исследование свойств полученных полимеров показало, что полимеры, содержащие в своей структуре комплексы салицилиденазометиновых производных ароматических диаминов с металлами, обладают хорошими электрофизическими свойствами, они сочетают в себе электрические свойства металлов и устойчивость к высоким температурам с преимуществами органических веществ, такими как низкая плотность, относительно легкий синтез и обработка, способность к растворению в органических растворителях и к пленкообразованию. Это позволяет говорить о них как о проводящих соединениях с приемлемыми технологическими свойствами. Так, отлитые из растворов ЭСПА в органических растворителях пленки обладают хорошей адгезией к различным субстратам и представляют собой фоточувствительные и электроактивные материалы.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения гетероядерных ацетатных комплексов двухвалентной платины | 2017 |
|
RU2647131C1 |
ПОЛИБИГУАНИДЫ ЛИНЕЙНОГО И ГРЕБЕНЧАТОГО СТРОЕНИЯ | 2003 |
|
RU2239629C1 |
ПОЛИАРИЛЕНДИФТАЛИДЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2016 |
|
RU2631502C2 |
ПОЛИАМИДЫ, УСТОЙЧИВЫЕ К ТЕПЛОВОМУ СТАРЕНИЮ | 2011 |
|
RU2566148C2 |
ПРОДУКТ ПОЛИКОНДЕНСАЦИИ МНОГОАТОМНОГО СПИРТА, ЭТЕРИФИЦИРОВАННОГО АЛИФАТИЧЕСКОЙ ИЛИ АРОМАТИЧЕСКОЙ ОДНООСНОВНОЙ КИСЛОТОЙ, С ДВУХОСНОВНОЙ КИСЛОТОЙ ИЛИ ЕЕ АНГИДРИДОМ И ОКСИДОМ ДВУХВАЛЕНТНОГО МЕТАЛЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1994 |
|
RU2089563C1 |
2-[4-(3,4-Дицианофенокси)-фенил]-3,1-бензоксазин-4-он в качестве мономера для полигексазоцикланов и полигексазоцикланы с хинозолоновыми циклами в цепи в качестве материалов для электропроводящих пленочных покрытий | 1981 |
|
SU1013446A1 |
ПОЛИ[(2,7-БИС(1',4'-ФЕНИЛЕН)ДИБЕНЗО[A,C]ФЕНАЗИН-4',4'-ДИИЛ)1,4-ФЕНИЛЕНДИМЕТАНИМИН-N,N'-ДИИЛ] | 2023 |
|
RU2817296C1 |
МЕТОДЫ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННЫХ ЧАСТИЦ СОЛЕЙ МЕТАЛЛОВ | 2008 |
|
RU2436594C1 |
СПОСОБ СИНТЕЗА МЕТАЛЛОУГЛЕРОДНОГО НАНОКОМПОЗИТА FeCo/C | 2013 |
|
RU2552454C2 |
Способ синтеза нанокомпозитов NiCoCu/C на основе полиакрилонитрила | 2021 |
|
RU2770599C1 |
Изобретение относится к способу получения электроактивных полимеров, в частности к способу получения металлсодержащих полисалицилиденазометинов. Металлсодержащие полисалицилиденазометины получают методом поликонденсации дисалицилиденовых производных ароматических диаминов с ацетатами или ацетилацетонатами двухвалентных металлов, преимущественно Со, Mn, Ni, Cr, Fe, Cd, Zn. Поликонденсацию проводят в течение 3-4 часов при 80-100°С в токе аргона в растворе ДМФА с количественным выходом. Полученные в соответствии с изобретением полимеры содержат в своей структуре комплексы оснований Шиффа с металлами. Эти полимеры сочетают электрические свойства металлов и устойчивость к высоким температурам с преимуществами органических материалов, то есть являются проводящими соединениями с приемлемыми технологическими свойствами. Отлитые из них пленки обладают хорошей адгезией к различным субстратам. 3 з.п. ф-лы, 1 табл.
1. Способ получения растворимых электроактивных полимеров, содержащих в цепи шестичленные циклы, на основе салицилиденазометинов, отличающийся тем, что процесс ведут путем поликонденсации дисалицилиденовых производных ароматических диаминов с солями двухвалентных металлов.
2. Способ по п.1, отличающийся тем, что в качестве солей двухвалентных металлов используют ацетаты или ацетилацетонаты металлов.
3. Способ по п.1, отличающийся тем, что процесс поликонденсации ведут при температуре 80-100°С.
4. Способ по п.1 или 2, отличающийся тем, что в качестве солей двухвалентных металлов используют преимущественно соли с катионом Mn, Со, Cu, Fe, Cd, Ni.
ЭЛЕКТРОАКТИВНЫЙ ПОЛИМЕР И МАТЕРИАЛ НА ЕГО ОСНОВЕ | 2004 |
|
RU2256967C1 |
Цианпроизводные оснований шиффа, как мономеры для получения термостойкий полимеров | 1975 |
|
SU537597A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Авторы
Даты
2009-11-20—Публикация
2008-04-11—Подача