ПЬЕЗОРЕЗОНАНСНЫЙ ДАТЧИК ВОДОРОДА Российский патент 2009 года по МПК H01L41/08 

Описание патента на изобретение RU2375790C1

Изобретение относится к области измерительной техники, в частности к массочувствительным пьезорезонансным датчикам, предназначенным для детектирования водорода.

Известно использование пьезорезонансных датчиков на объемных и поверхностных акустических волнах для определения компонентного состава газовых смесей (В.В.Малов. Пьезорезонансные датчики. М.: Энергоатомиздат, 1989). Детектирование газов этими датчиками, чувствительными к изменению массы, основано на изменении частоты колебаний кварцевой пластины или скорости распространения поверхностной акустической волны при сорбции определяемого газа чувствительными слоями.

Известны пьезорезонансные датчики влажности, выполненные на основе пьезорезонансных первичных преобразователей с селективным влагочувствительным покрытием. Принцип действия таких преобразователей заключается в том, что модуляция частоты в зависимости от влажности вызывается изменением массы воды, сорбированной влагочувствительным покрытием резонатора. Таким образом, влажность измеряется непосредственно по изменению массы, сорбированной на резонаторе влаги.

Первичный преобразователь датчика влажности (В.В.Малов. Пьезорезонансные датчики. М.: Энергоатомиздат, 1989) изготовлен на основе пьезорезонатора АТ-среза, а в качестве адсорбирующего слоя использован полиекапроамид, нанесенный из раствора на поверхность пьезоэлемента. Кроме того, в первичных преобразователях датчиков влажности в качестве адсорбирующего слоя используют силикагель и так называемые «молекулярные сита» [1], которые позволяют увеличить их чувствительность.

В первичном преобразователе датчика влажности (King W.H. Using quartz crystals as sorption detectors // Res. Develop.1969, Vol.20, №2, P.28-34, №5, P.29-332) в качестве адсорбирующего слоя, наносимого на поверхность пьезоэлемента, использован сульфатированный полистирол, обладающий высокой селективностью адсорбции влаги относительно большинства других компонентов газовой среды.

Основным недостатком данных преобразователей является их высокая инерционность. Это объясняется, во-первых, достаточно большим временем установления выходного сигнала (несколько минут и более), а, во-вторых, продолжительностью последействия при десорбции влаги с гигроскопического покрытия, которая может составлять час и более. При меньших временах измерения инерционность процесса десорбции воспринимается как гистерезис. Для устранения этого недостатка применяют специальные дополнительные устройства для принудительной осушки преобразователя.

Наиболее близким к предлагаемому изобретению является датчик на поверхностных акустических волнах для детектирования диоксида углерода (п. РФ №2132584, опубл.27.06.1999 г.). Датчик содержит пьезоактивный элемент с нанесенным на него чувствительным слоем. В качестве чувствительного слоя он содержит пленку на основе трет-бутилзамещенных фталоцианиновых комплексов.

Недостатком данного изобретения является низкая чувствительность и селективность датчика.

В настоящее время все большее внимание уделяется изучению полупроводниковых металлооксидных материалов, обладающих большим соотношением площади поверхности к объему, что приводит к ощутимому изменению чувствительности сенсора.

Газовые сенсоры на основе нитей металлооксидных материалов, обладающие высокой чувствительностью и селективностью, способны работать в широком диапазоне концентраций и при различных значениях температуры и влажности. Такие устройства могут найти широкое практическое применение в экологическом мониторинге и определении повышенных концентраций вредных газов в быту и на производстве.

Задачей настоящего изобретения является создание компактного более чувствительного датчика и повышение его быстродействия на появление взрывоопасных концентраций водорода.

Сущность изобретения заключается в том, что пьезорезонансный датчик водорода содержит пьезоактивный элемент в виде кварцевой пластины с нанесенным на него чувствительным слоем, в качестве чувствительного слоя используется сенсорное вещество на основе манганитных вискеров, выращенных или нанесенных, по крайней мере, на одной поверхности кварцевой пластины. Датчик снабжен блоком питания. Манганитные вискеры могут быть промотивированы катализатором. Датчик может быть снабжен эталонным пьезогенератором без сенсорного слоя.

На фиг.1 представлена конструкция пьезорезонансного датчика водорода, на фиг.2 - вариант пьезорезонансного датчика.

Ниже приведен пример исполнения датчика.

Пьезорезонансный датчик водорода содержит пьезоактивный элемент 1 в виде кварцевой пластины с нанесенным на него чувствительным слоем, газопроницаемый корпус 2. Пьезопластина 1 закреплена на держателе 3 с электроконтактами, подсоединенными к электронной схеме генерации колебаний 4 пьезопластины 1 и схеме преобразования частоты в напряжение 5. В качестве чувствительного слоя используется сенсорное вещество на основе манганитных вискеров, например,

Ва6Мn24O48, выращенных на обеих гранях кварцевой пластины. Манганитные вискеры промотивированы катализатором. В качестве катализатора использован палладий.

Принцип действия кварцевого пьезоэлектрического датчика заключается в следующем: частота колебаний кварцевого кристалла изменяется в зависимости от степени снижения концентрации кислорода в оксиде при взаимодействии его с водородом и испарения молекул воды. Частота колебаний пьзорезонансной пластинки 1 уменьшается при увеличении веса пластинки и увеличивается при снижении веса пластинки. Селективность датчика обеспечивается путем осаждения сенсорного вещества на основе промотированных манганитных вискеров, выращенных на обеих гранях кристалла.

Работа кварцевой пьезопластинки заключается в следующем: молекулы водорода, адсорбируясь поверхностью пластинки, вступают в реакцию, в ходе которой образуются молекулы воды, которые десорбируются с поверхности. Вес пластинки уменьшается на величину, равную весу потерянных молекул кислорода.

Изменение частоты колебаний ΔF подчиняется соотношению ΔF=KC, где С - концентрация анализируемого вещества, а К - постоянная, характерная для кристалла. Частоту колебаний можно измерить с точностью до 1 Гц, причем порог чувствительности датчика составляет около 10-9 грамма.

Для реализации принципа действия предложенного датчика разработана блок-схема (см. фиг.2), где введен эталонный пьезогенератор без сенсорного слоя 6. В этом случае принцип действия датчика основан на измерении разности частот двух кварцевых генераторов: эталонного 6 и измерительного 7. Эталонный датчик может быть выполнен, например, в виде кварцевого резонатора типа РГ-06 на частоту 5 мГц (0,5-10 мГц). Основу схем составляют два одинаковых генератора, построенных на кварцевых резонаторах и логических микросхемах (ДД1, ДД2).

Один из резонаторов вводится в измерительную камеру и служит датчиком массы. Сигналы с выходов обоих генераторов одновременно поступают на вход смесителя частот на диодах Д1, Д2. Напряжение разностной частоты поступает на повторитель (ДД3) и усилитель (ДД4) через фильтр нижних частот (R5, С4), который отсекает все паразитные В4 составляющие сигнала. Сигнал с выхода усилителя поступает на частотомер или осциллограф. Частота генерируемого сигнала регулируется с помощью подстроечной емкости (C1, С2). Частоты генерации обоих генераторов неизбежно отличаются друг от друга - сказываются индивидуальные особенности кварцевых резонаторов, емкость монтажа, емкость подводящих проводов. Изменение конструкции измерительного резонатора (пористый корпус) также приводит к изменению частоты генерации. Регулировкой емкости конденсаторов добиваются минимального значения частоты выходного сигнала перед измерениями.

Похожие патенты RU2375790C1

название год авторы номер документа
ДАТЧИК НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ДЕТЕКТИРОВАНИЯ ДИОКСИДА УГЛЕРОДА 1997
  • Костромин А.С.(Ru)
  • Розанов И.А.(Ru)
  • Черных Е.В.(Ru)
  • Кувахара Хироюки
  • Томилова Л.Г.(Ru)
  • Зефиров Н.С.(Ru)
RU2132584C1
Блок полезной нагрузки для исследования явления контаминации внутри приборов спутников стандарта CubeSat 2023
  • Фомин Дмитрий Владимирович
  • Зубко Евгений Ильич
  • Попов Дмитрий Александрович
  • Журкова Татьяна Алексеевна
RU2803675C1
ПЬЕЗОРЕЗОНАНСНЫЙ АНАЛИЗАТОР ПАРОВ И ГАЗОВ 1998
  • Могилевский А.Н.
  • Гречников А.А.
  • Майоров А.Д.
  • Фабелинский Ю.И.
RU2145707C1
ДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ ЛАБОРАТОРНЫХ ЗАГРЯЗНЕНИЙ 2007
  • Тимофеев Гордей Антонович
  • Савченко Виктор Ефремович
  • Усольцева Надежда Васильевна
  • Быкова Венера Васильевна
RU2360238C2
АНАЛИЗАТОР ПАРОВ И ГАЗОВ 1997
  • Могилевский А.Н.
  • Гречников А.А.
  • Майоров А.Д.
RU2117275C1
СПОСОБ ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ ВОЗДУХА 2011
  • Кочетова Жанна Юрьевна
  • Базарский Олег Владимирович
RU2486498C2
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ ВЫСОКОТЕМПЕРАТУРНОГО МАССОЧУВСТВИТЕЛЬНОГО ПЬЕЗОРЕЗОНАНСНОГО СЕНСОРА НА ОСНОВЕ МОНОКРИСТАЛЛА ЛАНТАНГАЛЛИЕВОГО ТАНТАЛАТА АЛЮМИНИЯ 2013
  • Емелин Евгений Валерьевич
  • Иржак Дмитрий Вадимович
  • Рощупкин Дмитрий Валентинович
RU2534104C1
АНАЛИЗАТОР ОБЩЕГО ДАВЛЕНИЯ, ПЛОТНОСТИ И ПАРЦИАНАЛЬНОГО ДАВЛЕНИЯ ПАРОВ ВОДЫ В НИЗКОМ ВАКУУМЕ 2013
  • Коваленко Валерий Владимирович
  • Солдатова Юлия Александровна
RU2556288C2
Пьезорезонансный датчик для определения относительной влажности воздуха 2016
  • Кочетова Жанна Юрьевна
  • Базарский Олег Владимирович
  • Кучменко Татьяна Аатольевна
  • Коновалов Денис Валерьевич
RU2632997C1
СВЧ акустический масс-сенсор 2019
  • Сорокин Борис Павлович
  • Квашнин Геннадий Михайлович
  • Асафьев Н.О.
  • Лупарев Николай Викторович
RU2723956C1

Иллюстрации к изобретению RU 2 375 790 C1

Реферат патента 2009 года ПЬЕЗОРЕЗОНАНСНЫЙ ДАТЧИК ВОДОРОДА

Изобретение относится к области измерительной техники, в частности к массочувствительным пьезорезонансным датчикам, предназначенным для детектирования водорода. Технический результат: повышение быстродействия на появление взрывоопасных концентраций водорода. Сущность: пьезорезонансный датчик водорода содержит пьезоактивный элемент в виде кварцевой пластины с нанесенным на него чувствительным слоем. В качестве чувствительного слоя используется сенсорное вещество на основе манганитных вискеров, выращенных или нанесенных, по крайней мере, на одной поверхности кварцевой пластины. Датчик снабжен блоком питания. Манганитные вискеры могут быть промотивированы катализатором. Датчик может быть снабжен эталонным пьезогенератором без сенсорного слоя. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 375 790 C1

1. Пьезорезонансный датчик водорода, содержащий пьезоактивный элемент в виде кварцевой пластины с нанесенным на него чувствительным слоем, отличающийся тем, что в качестве чувствительного слоя используется сенсорное вещество на основе манганитных вискеров, выращенных или нанесенных, по крайней мере, на одной поверхности кварцевой пластины.

2. Пьезорезонансный датчик водорода по п.1, отличающийся тем, что он снабжен блоком питания.

3. Пьезорезонансный датчик водорода по п.1, отличающийся тем, что манганитные вискеры промотированы катализатором.

4. Пьезорезонансный датчик водорода по п.2, отличающийся тем, что датчик снабжен эталонным пьезогенератором без сенсорного слоя.

Документы, цитированные в отчете о поиске Патент 2009 года RU2375790C1

ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ГАЗОВОГО ДАТЧИКА 1992
  • Коновалов Владимир Васильевич
RU2011985C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГАЗОВ В ЖИДКИХ МЕТАЛЛАХ 2006
  • Воронцов Вадим Борисович
  • Горчинский Алексей Валерьевич
RU2307348C1
ПЬЕЗОРЕЗОНАНСНЫЙ АНАЛИЗАТОР ПАРОВ И ГАЗОВ 1998
  • Могилевский А.Н.
  • Гречников А.А.
  • Майоров А.Д.
  • Фабелинский Ю.И.
RU2145707C1
ДАТЧИК НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ДЕТЕКТИРОВАНИЯ ДИОКСИДА УГЛЕРОДА 1997
  • Костромин А.С.(Ru)
  • Розанов И.А.(Ru)
  • Черных Е.В.(Ru)
  • Кувахара Хироюки
  • Томилова Л.Г.(Ru)
  • Зефиров Н.С.(Ru)
RU2132584C1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
US 7268662 B2, 11.09.2007.

RU 2 375 790 C1

Авторы

Гусев Александр Леонидович

Гудилин Евгений Алексеевич

Добровольский Юрий Анатольевич

Забабуркин Дмитрий Иванович

Даты

2009-12-10Публикация

2008-07-21Подача