ПОТЕНЦИОМЕТРИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ ЛИЗИНА В ВОДНОМ РАСТВОРЕ Российский патент 2009 года по МПК G01N27/28 

Описание патента на изобретение RU2376591C1

Изобретение относится к области потенциометрических методов анализа. Оно может быть использовано для количественного контроля лизина в продуктах пищевой и фармацевтической промышленности, а также для непрерывного количественного контроля лизина на всех стадиях его электродиализной очистки.

Известен биосенсор для определения лизина, основанный на детектировании аммиака, выделяющегося при взаимодействии лизина с лизин-оксидазой, иммобилизированной на мембрану аммиак-селективного электрода (Garsia-Villar N., Saurina J., Hernandez-Cassou S. // Fresenius' journal of analytical chemistry. 2001. Volume 371. №7. P.1001-1008).

Недостатками известного сенсора являются, во-первых, неселективность в растворах, содержащих другие аминокислоты; во-вторых, необходимость регенерации активного фермента после измерения, что делает сенсор сложным в эксплуатации и непригодным для использования в длительных непрерывных процессах; в-третьих, низкая точность, порядка 30%.

Заявляемое изобретение предназначено для количественного определения лизина в водных растворах.

Технический результат: увеличение селективности и стабильности сенсора, упрощение эксплуатации, увеличение точности определения.

Технический результат достигается тем, что потенциометрический сенсор для определения лизина в водном растворе состоит из хлорсеребряного электрода сравнения, мембраны из перфторированного сульфокатионитового полимера, двух корпусов, соединенных между собой, в одном из которых установлен электрод сравнения, в другом установлена мембрана таким образом, что один ее конец размещен в первом корпусе, а другой выступает за пределы второго корпуса.

Мембрана может быть выполнена в виде полосы, или стержня, или трубки и обработана в этиленгликоле при 110°С.

Сенсор может быть снабжен защитным колпачком для выступающего за пределы второго корпуса конца мембраны.

Для разработки сенсора использовались перфторированные сульфокатионитовые (ПС) мембраны МФ-4СК (изготовленные ОАО «Пластполимер», г.Санкт-Петербург, Россия) в лизиновой форме, предварительно обработанные в этиленгликоле при 110°С. Такая обработка вызывает быстрые и стабильные перестройки наноструктуры ПС полимеров, в то время как их молекулярная структура остается практически неизменной [1]. Термическая обработка мембран в этиленгликоле увеличивает чувствительность сенсора.

Использование катионитовых мембран для определения лизина в водных растворах основано на потенциалопределяющей протолитической реакции (1), в результате которой однозарядные ионы лизина в растворе переходят в двухзарядные в фазе мембраны [2-4].

На фигуре 1 представлена схема сенсора; на фиг.2 - основные аналитические характеристики сенсора; на фиг.3 - средние значения концентрационных констант селективности сенсора к катионам лизина; на фиг.4 представлены фактические и найденные значения концентраций лизина для некоторых исследуемых растворов.

Конструкция сенсора включает два пластиковых (или стеклянных) корпуса 1 и 2 объемом соответственно 5 и 0,5 см3 соединенных между собой пробкой 3. Корпуса 1 и 2 герметично закрыты пробками 4, 5, 6. Хлорсеребряный электрод сравнения 7 (серебряная проволока, покрытая хлоридом серебра), закрепленный в пробке 4, погружен в корпус 1. Мембрана (полоска, трубка, стержень) 8 длиной 6-8 см закреплена в пробках 3 и 6 таким образом, что один ее конец 9 находится внутри корпуса 1, основная ее часть находится внутри корпуса 2, второй ее конец 10 выступает за пределы корпуса 2. При длительном хранении конец 10 мембраны закрывается защитным колпачком 11. Между измерениями сенсор следует хранить в 0,001 М растворе моногидрохлорида лизина.

Работа сенсора реализуется следующим образом.

0,001 М раствор моногидрохлорида лизина в корпусе 1 заменяется 1 М раствором моногидрохлорида лизина. Корпус 1 закрывается пробкой 4, в которую встроен хлорсеребряный электрод сравнения 7. Из корпуса 2 удаляется 0,001 М раствор моногидрохлорида лизина, после чего корпус 2 закрывается пробкой 5. Сенсор свободным концом 10 мембраны погружается в анализируемый раствор. Измерение потенциала осуществляется относительно хлорсеребряного электрода 7 сравнения с помощью электронного вольтметра. Значение потенциала фиксируется через 10-15 минут.

ПРИМЕР 1

На фигуре 3 представлены калибровочные зависимости отклика сенсора на основе модифицированных (1) и исходных (2) мембран МФ-4СК от концентрации катионов лизина в индивидуальных растворах моногидрохлорида лизина. Показано, что чувствительность сенсора после обработки мембран этиленгликолем увеличивается, об этом свидетельствует увеличение наклона калибровочной зависимости. Тангенс угла наклона 50,6±0,1 мВ/lgC калибровочной зависимости для сенсора на основе модифицированных мембран близок к нернстовскому, что позволяет использовать разрабатываемый сенсор для селективного определения лизина.

ПРИМЕР 2

Для оценки селективности сенсора к катионам лизина исследованы водные растворы моногидрохлорида лизина с добавками нейтральных аминокислот. Константы селективности (2) рассчитывали как отношение концентраций определяемого и мешающего компонентов в точках, начиная с которых наблюдается заметное отклонение отклика сенсора от постоянного значения.

Средние значения концентрационных констант селективности сенсора к катионам лизина в присутствии индивидуальных аминокислот глицина, аланина и лейцина, а также в присутствии эквимолярной смеси аминокислот глицина, аланина, лейцина представлены в таблице на фигуре 4. Константы селективности для исследуемых растворов не превышали 0,019.

ПРИМЕР 3

Для определения концентрации лизина в водных растворах сенсор откалибровали в индивидуальных растворах моногидрохлорида лизина. Зависимость отклика сенсора от концентрации катионов лизина в растворе определяется уравнением (3).

Методом калибровочного графика определены концентрации лизина в индивидуальных растворах моногидрохлорида лизина и в растворах моногидрохлорида лизина с добавками нейтральных аминокислот. В таблице на фигуре 5 представлены фактические и найденные значения концентраций лизина для некоторых исследуемых растворов. Относительная ошибка определения не превышала 5%.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Кривандин А.В., Соловьева А.Б., Глаголев КН., Шаталова О.В., Котова С.Л., Беляев В.Е. // Серия. Критические технологии. Мембраны. 2003. №17. С.16-21.

2. Бобрешова О.В., Кулинцов П.И., Новикова Л.А. / Сорбционные и хроматографические процессы. 2003. Т.3. Вып.3. С.310-319.

3. Аристов И.В., Бобрешова О.В., Кулинцов П.И., Загородных Л.А. // Электрохимия. 2001. Т.37. №2. С.248-251.

4. Письменская Н.Д., Белова Е.И., Никоненко В.В., Ларше К. / Электрохимия, 2008, Т.44.

Похожие патенты RU2376591C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДОННАНОВСКОГО ПОТЕНЦИАЛА 2008
  • Бобрешова Ольга Владимировна
  • Кулинцов Петр Иванович
  • Агупова Мария Владимировна
  • Паршина Анна Валерьевна
RU2364859C1
СПОСОБ ОДНОВРЕМЕННОЙ ОЦЕНКИ ПОТЕНЦИАЛА ДОННАНА В ВОСЬМИ ЭЛЕКТРОМЕМБРАННЫХ СИСТЕМАХ 2015
  • Бобрешова Ольга Владимировна
  • Паршина Анна Валерьевна
  • Усков Григорий Константинович
  • Денисова Татьяна Сергеевна
  • Рыжкова Елена Александровна
RU2617347C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОЙ АНИЗОТРОПНОЙ КАТИОНООБМЕННОЙ МЕМБРАНЫ 2014
  • Долгополов Сергей Владимирович
  • Лоза Наталья Владимировна
  • Кононенко Наталья Анатольевна
  • Лоза Сергей Алексеевич
  • Андреева Марина Александровна
  • Фалина Ирина Владимировна
RU2574453C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОЙ КАТИОНООБМЕННОЙ МЕМБРАНЫ 2011
  • Кононенко Наталья Анатольевна
  • Березина Нинель Петровна
  • Долгополов Сергей Владимирович
  • Половинко Татьяна Петровна
  • Фалина Ирина Владимировна
RU2487145C1
Способ получения композитной катионообменной мембраны 2019
  • Лоза Наталья Владимировна
  • Кононенко Наталья Анатольевна
  • Фалина Ирина Владимировна
  • Лоза Сергей Алексеевич
  • Шкирская Светлана Алексеевна
RU2700530C1
Электрохимический сенсор 2023
  • Ермаков Сергей Сергеевич
  • Семенова Екатерина Антоновна
RU2819748C1
Потенциометрический датчик молекулярного кислорода 1991
  • Валиотти Александр Борисович
  • Бочаров Андрей Викторович
  • Ермакова Татьяна Владимировна
SU1804622A3
СПОСОБ ОПРЕДЕЛЕНИЯ ДОННАНОВСКОГО ПОТЕНЦИАЛА 2003
  • Бобрешова О.В.
  • Кулинцов П.И.
  • Новикова Л.А.
RU2250456C1
СПОСОБ ИЗМЕНЕНИЯ ХАРАКТЕРИСТИК ЭЛЕКТРОДИАЛИЗАТОРА С ЧЕРЕДУЮЩИМИСЯ КАТИОНООБМЕННЫМИ И АНИОНООБМЕННЫМИ МЕМБРАНАМИ 2014
  • Лоза Наталья Владимировна
  • Лоза Сергей Алексеевич
  • Кононенко Наталья Анатольевна
RU2566415C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОЙ МЕМБРАНЫ С ФИКСИРОВАННОЙ ТОЛЩИНОЙ СЛОЯ ПОЛИАНИЛИНА 2012
  • Березина Нинель Петровна
  • Шкирская Светлана Алексеевна
  • Колечко Мария Викторовна
  • Тимофеев Сергей Васильевич
RU2481885C1

Иллюстрации к изобретению RU 2 376 591 C1

Реферат патента 2009 года ПОТЕНЦИОМЕТРИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ ЛИЗИНА В ВОДНОМ РАСТВОРЕ

Изобретение относится к области потенциометрических методов анализа. Техническим результатом является увеличение селективности и стабильности сенсора, упрощение эксплуатации, увеличение точности определения. Сущность изобретения: в потенциометрическом сенсоре для определения лизина в водном растворе, состоящем из хлорсеребряного электрода сравнения, мембраны из перфторированного сульфокатионитового полимера, двух корпусов, соединенных между собой, в одном из корпусов установлен электрод сравнения, в другом установлена мембрана таким образом, что один ее конец размещен в первом корпусе, а другой выступает за пределы второго корпуса. 5 ил.

Формула изобретения RU 2 376 591 C1

1. Потенциометрический сенсор для определения лизина в водном растворе, состоящий из хлорсеребряного электрода сравнения, мембраны из перфторированного сульфокатионитового полимера, двух корпусов, соединенных между собой, в одном из корпусов установлен электрод сравнения, в другом установлена мембрана таким образом, что один ее конец размещен в первом корпусе, а другой выступает за пределы второго корпуса.

2. Сенсор по п.1, отличающийся тем, что мембрана выполнена в виде полоски или стержня, или трубки.

3. Сенсор по п.1, отличающийся тем, что мембрана обработана в этиленгликоле при 110°С.

Документы, цитированные в отчете о поиске Патент 2009 года RU2376591C1

Garsia-Villar N
at all
Fresenius journal of analytical chemistry
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
Гидравлическая передача, могущая служить насосом 1921
  • Жмуркин И.А.
SU371A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
УСТРОЙСТВО ДЛЯ ИЗБИРАТЕЛЬНОГО ВЫЗОВА СЕМИ ТЕЛЕФОННЫХ АППАРАТОВ 1922
  • Навяжский Г.Л.
SU1001A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЛИЗИНА В ВОДНОМ РАСТВОРЕ 2006
  • Мокшина Надежда Яковлевна
  • Нифталиев Сабухи Ильич
  • Пахомова Оксана Анатольевна
RU2299433C1
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВЕЩЕСТВ 1999
  • Кондаков В.М.
  • Рябов А.С.
  • Семенов Е.Н.
RU2152610C1
SU 1515701 A1, 20.07.1999
Электрохимическая ячейка для потенциометрического измерения концентрации ионов 1987
  • Капустин Александр Михайлович
  • Голубцов Александр Иванович
  • Ратникова Тамара Афанасьевна
  • Рычков Владимир Леонидович
  • Кутаков Владимир Иванович
  • Иванова Зинаида Петровна
SU1474535A1
WO 8707722 A1, 17.12.1987
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ В КАНАЛАХ ЯЭУ 2002
  • Шаров В.П.
  • Захаров Н.В.
  • Болтенко Э.А.
  • Ковалев В.А.
RU2228548C2
JP 58005199 A, 12.01.1983.

RU 2 376 591 C1

Авторы

Бобрешова Ольга Владимировна

Паршина Анна Валерьевна

Агупова Мария Владимировна

Тимофеев Сергей Васильевич

Даты

2009-12-20Публикация

2008-07-24Подача