СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ Российский патент 2010 года по МПК C04B38/02 

Описание патента на изобретение RU2380343C1

Изобретение относится к строительству и производству строительных материалов и может быть использовано при изготовлении стеновых изделий и конструкций, в том числе возводимых монолитным способом.

Известны сырьевые смеси, содержащие порообразующие вещества, для получения газобетонов, основанные на реакции взаимодействия алюминиевой пудры и извести [1]:

Образующийся газ - водород поризует растворную смесь, превращая ее в затвердевшем состоянии в газобетон Однако процессы, основанные на реакции (1) имеют недостатки: процесс генерации газа протекает в течение длительного времени, поэтому поровая структура формируется в формах и имеет дефекты, связанные с длительностью и неравномерностью поризации, а также с высокой диффузионной способностью водорода Это существенно ухудшает потенциально возможные физико-технические свойства таких газобетонов.

Наиболее близкой к изобретению является сырьевая смесь для получения газобетона неавтоклавного твердения, принятая в качестве прототипа, содержащая, мас.%: портландцемент 21-56, зола-унос 14-49, карбамид 0,04-0,18, гипохлорит кальция 0,12-0,54, поверхностно-активное вещество (ПАВ) неионогенного типа 0,08-0,22, вода - остальное [2].

Процесс поризации растворной смеси по прототипу обеспечивается за счет химической реакции:

и процессов, стабилизирующих газовые пузырьки в растворной смеси, благодаря адсорбционным и структурирующим особенностям молекул ПАВ. Компоненты: карбамид, гипохлорит кальция, ПАВ, представляют собой комплексную порообразующую добавку, так как только вместе они, взятые в определенном соотношении, способны обеспечить превращение строительной растворной смеси в газобетон.

Однако состав по прототипу имеет недостатки. Как видно из реакции (2), в процессе поризации растворной смеси наряду с инертным газом N2 образуется и химически активный газ СO2, который взаимодействует с оксидом кальция, входящим в состав портландцемента, и тем самым ухудшает потенциально возможные прочностные свойства газобетона, а также приводит к усадочным явлениям при формовании. Причиной усадки может являться и углекислый газ, теряемый за счет связывания его в соль CaCO3, и недостаточно высокая эффективность ПАВ. Кроме того, время поризации, равное 182 с, является ограничивающим производительность процесса, так как порционное приготовление поризованной смеси составляет минимум 7 мин при температуре +20°C. Газобетон по прототипу интенсивно поглощает влагу и во влажном состоянии теряет до 60% прочности на сжатие. При высыхании такой бетон имеет усадку 2,6 мм/м с образованием усадочных трещин.

Перед заявляемым изобретением поставлена задача повышения прочности газобетонов, твердеющих в естественных условиях, сокращения времени поризации растворной смеси, снижения усадки при высыхании газобетона, устранения усадочных явлений при его формовании - выдержке, снижения сорбционной влажности и водопоглощения, а также использования более доступных и дешевых сырьевых материалов.

Поставленная задача решается тем, что сырьевая смесь для получения газобетона неавтоклавного твердения, включающая портландцемент, заполнитель, карбамид, ПАВ и воду, в качестве заполнителя содержит песок кварцевый, в качестве ПАВ содержит мылонафт и дополнительно содержит хлорную известь при следующем содержании компонентов, мас.%:

портландцемент 27-38 песок кварцевый 38-50 карбамид 0,02-0,18 хлорная известь 0,11-0,9 мылонафт 0,15-0,31 вода остальное

В заявляемом изобретении впервые предложена сырьевая смесь для получения газобетонов неавтоклавного твердения, основанная на использовании доступных и экономически привлекательных составляющих компонентов.

Мылонафт - продукт нефтепереработки, не относится к пенообразователям, поэтому для целей получения газобетонов не использовался.

Хлорная известь - вещество, известное как дезинфицирующее, отбеливающее средство. Для приготовления растворных смесей газобетонов не использовалась.

В заявляемом изобретении поризация растворной смеси осуществляется образующимся в ней инертным газом азотом при отсутствии в газовой фазе углекислого газа

поэтому, а также благодаря синергетическому эффекту взаимодействия компонентов сырьевой смеси в процессе поризации и твердения, газобетон приобретает высокие физико-технические характеристики.

При взаимодействии нафтената натрия - основного активного компонента ПАВ ионогенного типа - мылонафта с ионами Са+2, входящими в состав хлорной извести, образуется нафтенат кальция, представляющий собой водонерастворимое соединение, так называемый резинат. Нафтенаты кальция, внедряясь в структуру газобетона, стабилизируют поризованную систему, усиливают прочность скелета газобетона и способствуют снижению влияния деструктурирующих явлений многофазной, полидисперсной системы на этапе ее формирования и твердения. Заявляемая смесь в 3-6 раз быстрее, чем смесь по прототипу, подвергается поризации. Происходит это благодаря тому, что в присутствии ПАВ - мылонафта в составе компонентов смеси не тормозятся диффузионные процессы, воздействующие на скорость реакции взаимодействия газогенерирующих веществ.

Увеличению прочности газобетона из заявляемой сырьевой смеси способствует также побочный продукт реакции (3) - хлористый кальций, являющийся, как известно, ускорителем твердения. Присутствие в смеси ПАВ мылонафта повышает активность хлористого кальция, который оказывает влияние на прочность поризованной системы в большей степени по сравнению с прототипом.

Заявляемую сырьевую смесь готовят путем дозирования и смешения компонентов.

Пример. Для получения сырьевой смеси, образующей при твердении газобетон D900, в растворосмеситель подавали через дозирующее устройство при постоянном перемешивании портландцемент - 36 мас.%, песок кварцевый - 38 мас.%, хлорную известь - 0,39 мас.%, мылонафт - 0,18 мас.%, карбамид - 0,08 мас.% и воду - 25,35 мас.%. Карбамид подавали в виде 20%-ного водного раствора, мылонафт - 25%-ного водного раствора. Вода в растворах карбамида и мылонафта входила в количество воды - 25,35 мас.%. Смесь вымешивали в течение 1-2 минут и полученную поризованную смесь (состав 3 в таблице 1) формовали. Полученный образец газобетона испытывали на гидравлическом прессе. Результаты испытаний представлены в таблице 2, опыт 3 для сравнения с известным газобетоном D900 (состав 8 в табл.1) и контрольными образцами газобетона (составы 9 и 10 в табл.1).

Аналогично описанному примеру приготовили составы заявляемой сырьевой смеси для газобетона D1200, D1100, D800, D600, представленные в таблице 1. Результаты испытаний составов представлены в таблице 2.

Из таблицы видно, что максимальный эффект достижения поставленной задачи обеспечивает заявляемый состав сырьевой смеси (1-7 в табл.2), что особенно наглядно видно при сравнении сопоставимых марок газобетона с равным содержанием вяжущего состава 3 с известным составом 8 и контрольными составами 9 и 10 Прочность газобетона из состава 3 в возрасте 28 суток увеличилась на 47% и в ранние сроки твердения (3 суток) в 2,7 раза по сравнению с составом 8. Заявляемый состав не дает усадки при формовании, дает минимальную усадку при высыхании, максимальную прочность на сжатие. Значительно снизилось время поризации и показатели водопоглощения. Использование заявляемых компонентов в совокупности с другими известными компонентами (составы 9,10) не дают эффекта, достижимого заявляемой совокупностью признаков.

Список источников:

1. Инструкция по технологии изделий из ячеистого бетона СН-277-80. - М.: Стройиздат, 1981.

2. RU 2058968, 1990.

Похожие патенты RU2380343C1

название год авторы номер документа
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2007
  • Смиренская Вера Николаевна
  • Долотова Раиса Григорьевна
  • Козлова Надежда Григорьевна
RU2340582C1
СОСТАВ СЫРЬЕВОЙ СМЕСИ ДЛЯ ИЗГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА 2011
  • Курятников Юрий Юрьевич
  • Кольцова Светлана Андреевна
  • Земцова Татьяна Сергеевна
RU2460708C1
Формовочная смесь для приготовления пенобетонов 2022
  • Аболтынь Александр Яковлевич
  • Аболтынь Илья Александрович
  • Заходякина Елена Александровна
  • Габидуллин Дамир Филигатович
RU2802407C2
СУХАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА (ВАРИАНТЫ) 2013
  • Кривцов Евгений Евгеньевич
  • Хайруллин Марат Камилович
  • Зарецкий Олег Маркович
  • Сахащик Валерий Степанович
  • Мнацаканян Аветик Арменакович
RU2547532C1
Сырьевая смесь для получения неавтоклавного пенобетона 2018
  • Бартеньева Екатерина Анатольевна
  • Машкин Николай Алексеевич
RU2712883C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА 2016
  • Чемисенко Олег Владимирович
  • Брейтер Юрий Лазаревич
  • Полоумова Екатерина Николаевна
RU2635687C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ СЫРЬЕВОЙ СМЕСИ ДЛЯ ПЕНОГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2015
  • Строкова Валерия Валерьевна
  • Нелюбова Виктория Викторовна
  • Сумин Артем Валерьевич
RU2614865C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2009
  • Долотова Раиса Григорьевна
  • Верещагин Владимир Иванович
  • Кара-Сал Борис Комбуй-Оолович
RU2410362C1
СУХАЯ СМЕСЬ ДЛЯ ТЕПЛОИЗОЛЯЦИОННОГО НЕАВТОКЛАВНОГО ПЕНОГАЗОБЕТОНА 2008
  • Строкова Валерия Валерьевна
  • Сулейманова Людмила Александровна
  • Погорелова Инна Александровна
  • Бухало Анна Борисовна
  • Мирошников Евгений Владимирович
  • Аниканова Елена Александровна
  • Любимов Дмитрий Николаевич
RU2403231C2
СУХАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2006
  • Белов Владимир Владимирович
  • Курятников Юрий Юрьевич
RU2304127C1

Реферат патента 2010 года СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ

Изобретение относится к строительству и производству строительных материалов и может быть использовано при изготовлении стеновых изделий и конструкций, в том числе возводимых монолитным способом. Технический результат - повышение прочности газобетонов, твердеющих в естественных условиях, сокращение времени поризации растворной смеси, снижение усадки при высыхании газобетона, устранение усадочных явлений при его формовании, снижение сорбционной влажности и водопоглощения, а также использование более доступных и дешевых сырьевых материалов. Сырьевая смесь для получения газобетона неавтоклавного твердения включает, мас.%: портландцемент 27-38, песок кварцевый 38-50, карбамид 0,02-0,18, хлорную известь 0,11-0,9, мылонафт 0,15-0,31, воду - остальное. 2 табл.

Формула изобретения RU 2 380 343 C1

Сырьевая смесь для получения газобетона неавтоклавного твердения, включающая портландцемент, заполнитель, карбамид, поверхностно-активное вещество и воду, отличающаяся тем, что в качестве заполнителя содержит песок кварцевый, в качестве поверхностно-активного вещества содержит мылонафт и дополнительно содержит хлорную известь при следующем содержании компонентов, мас.%:
портландцемент 27-38 песок кварцевый 38-50 карбамид 0,02-0,18 хлорная известь 0,11-0,9 мылонафт 0,15-0,31 вода остальное

Документы, цитированные в отчете о поиске Патент 2010 года RU2380343C1

RU 2058968 C1, 27.04.1996
БЕТОННАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОННЫХИЗДЕЛИЙ 0
  • А. П. Меркин Ю. И. Мирецкий
SU321499A1
RU 2006111811 A, 27.10.2007
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОБЕТОНА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Зубехин С.А.
  • Юдович Б.Э.
  • Губарев В.Г.
RU2262497C2
JP 2007169133 A, 05.07.2007.

RU 2 380 343 C1

Авторы

Полухина Надежда Александровна

Чалая Елена Валентиновна

Зеленков Дмитрий Сергеевич

Даты

2010-01-27Публикация

2008-10-20Подача