Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток.
Известна сырьевая смесь и способ приготовления газобетона (см. патент РФ №2281267 С1, МПК - С04В, 38/00 опубл. 10.08.2006 г., Бюл. №22), содержащая, мас.%: портландцемент - 9,7-23,3, зола-унос ТЭЦ-7 г. Братск - 43,2-54, строительный гипс - 1,9-2,0, моющее средство МС «Тайга» - 0,2-0,21, алюминиевая пудра - 0,06-0,07, вода - остальное, а способ заключается в том, что сырьевую смесь укладывают в форму, после чего выдерживают 0,5-1 ч на виброплощадке с амплитудой вибрации 0,2-0,3 мм, частотой вибрации 50-100 Гц, осуществляют вспучивание смеси в течение 5-7 мин, пока форма находится на виброплощадке; изделия выдерживают в формах в течение 2-3 ч при температуре не ниже 20°С, затем срезают «горбушку» и помещают форму в камеру тепловлажностной обработки, и ведут обработку по режиму (3+5+2) при температуре изотермической выдержки 95°С.
Недостатками известного состава сырьевой смеси являются высокое водосодержание смеси, большая воздушная усадка и низкий коэффициент качества.
Известна также сырьевая смесь и способ изготовления газобетонных изделий (см. патент РФ №2274626 С2, МПК - С04В, 38/00 опубл. 20.04.2006 г., Бюл. №11), содержащая портландцемент, золу-унос ТЭЦ-7 г. Братска, моющее средство МС «Тайга» с содержанием до 98,6 мас.% кислот жирных таловых омыленных и до 0,5 мас.% натриевой соли карбоксиметилцеллюлозы, строительный гипс, при следующем соотношении компонентов, мас.%: портландцемент - 9,7-23,3, зола-унос ТЭЦ-7 г. Братск - 43,2-54,8, строительный гипс - 1,89-2,0, моющее средство МС «Тайга» - 0,16-0,23, алюминиевая пудра - 0,05-0,07, вода - остальное, а способ заключается в том, что перемешивают сухие компоненты, добавляют воды, отдельно готовят водную суспензию алюминиевой пудры и моющего средства МС «Тайга», перемешивают его 3-4 мин и вводят в смесь, перемешивают не более 1 мин, а тепловлажностную обработку осуществляют при 95°С.
Недостатками известного аналога являются невысокий коэффициент качества, недостаточная прочность при изгибе и высокая теплопроводность.
Наиболее близкой по технической сущности и достигаемому техническому результату является смесь, полученная из ячеистого бетона неавтоклавного твердения (см. патент RU №2226517 С2 МПК - С04В 38/10, опубл. 10.04.2004 г., Бюл. №10), содержащая мас.%: портландцемент - 43-90, кремнеземистый компонент - 5-45, ПАВ - 1-2, алюминат натрия - 0,75-2,5, пластификатор - 0,5-1,5, полиамидные нити длиной 3-5 мм - 2,75-6,0.
Недостатками известного прототипа являются невозможность обеспечения стабильных свойств газобетона, ограниченная область применения из-за появления усадочных деформаций и невысокой прочности газобетона.
Технической задачей предлагаемого изобретения является устранение указанных недостатков, техническим результатом которого будет повышение прочности, морозостойкости, снижение теплопроводности и соответственно высокий коэффициент качества неавтоклавного газобетона.
Указанный технический результат достигается за счет того, что сырьевая смесь для изготовления изделий из неавтоклавного газобетона, включающая портландцемент, золу-унос, моющий порошок, гипс строительный и воду, отличается тем, что содержит при следующем соотношении компонентов, мас.%: портландцемент - 35-55, в качестве золы-унос - золу-унос ТЭЦ-4 г. Омск - 10,1-33, в качестве гипса строительного - гипс строительный ГП-6 - 0,25-0,37, алюминиевую пасту - 0,06-0,1, в качестве моющего порошка - моющий порошок «Зифа» - 0,001 - 0,002, гидроксид натрия - 0,18-0,4, хлорид кальция - 0,14-0,2, фибра полиамидная длиной 12-14 мм и диаметром 0,30-0,35 мкм - 0,04-0,14, вода - 30,978-33,898.
В зависимости от назначения, конструктивных размеров газобетона и состава сырьевой смеси выбирают:
Портландцемент по ГОСТ 31108-2016 марок ЦЕМ I или ЦЕМ II с содержанием минеральных добавок 0-20%.
Зола-унос по ГОСТ 25818-91 от сжигания бурых углей Канско-Ачинского бассейна ТЭЦ-4 г. Омск содержит SiO2 не менее 45%, СаО не более 10%, SO3 не более 3%, влажность не более 0,05%.
Моющий порошок «Зифа» по ТУ 2381-023-00204872-2008 содержит в своем составе: соду, фосфаты, силикаты, сульфаты, энзимы и ферменты.
Фибра полиамидная по ГОСТ 16008-94, материал полиамид-6, длина 12-14 мм, диаметр 30-35 мкм, с плотностью 1,14 г/см3.
Вода техническая по ГОСТ 23732-2011.
Гипс строительный 2-водный ГП-6 по ГОСТ 4013-82.
Гидроксид натрия NaOH технический чешуированный по ГОСТ 2263-79, массовая доля не менее 98%.
Паста алюминиевая по ТУ 1791-001-757554739-2006. Массовая доля активного алюминия не менее 88,1%.
Хлорид кальция CaCl2 технический 2-водный по ГОСТ 450-77, массовая доля не менее 98%.
В известном прототипе применяются нити полиамидные длиной 3-5 мм с очень большой плотностью 187 текс, содержание их в составе, мас.% - 2,75-6,0.
Такой большой объем жестких полиамидных нитей затрудняет равномерное перемешивание всех компонентов смеси и не обеспечивает стабильные свойства газобетона по всему объему.
В предложенном изобретении используется полиамидное волокно-фибра длиной 12-14 мм с низкой плотностью 0,4 текс, содержание фибры в составе, мас.% - 0,04-0,14, что позволяет стабилизировать процесс поризации сырьевой смеси. За счет равномерного распределения полиамидной фибры по всему объему сырьевой смеси стабилизируются свойства готового газобетона.
Составы сырьевых смесей по прототипу и предлагаемому изобретению
В предлагаемой сырьевой смеси используется портландцемент марки ЦЕМ I 42,5 Б, что позволяет стабилизировать процесс поризации газобетонной смеси, значительно сократить сроки набора прочности изделиям за счет использования высокой гидравлической активности портландцемента и его способности генерировать высокодисперсные продукты гидратации, которые участвуют в формировании округлых замкнутых пор и прочных межпоровых перегородок, повысить прочность и морозостойкость изделий из газобетона.
Зола-унос ТЭЦ-4 г. Омск - кислая зола и является кремнеземистым заполнителем для газобетона, повышая его прочность и достаточный уровень долговечности.
Использование в предлагаемом составе алюминиевой пасты вместо пудры позволяет сократить время перемешивания алюминиевой суспензии, т.к. паста в отличие от пудры не так сильно пылит, еще одним отличием является сокращение количества используемого моющего порошка и снижение температуры воды.
Гидроксид натрия вводится в смесь для интенсификации процесса поризации смеси за счет более активного взаимодействия алюминиевой пасты с гидроксидом натрия с образованием гидроалюмината натрия. Соединение образуется непосредственно в смеси в гелеобразной форме и со временем кристаллизуется в виде гексагональных кристаллов слоистой структуры в составе межпоровых перегородок.
При кристаллизации гидроалюминат натрия связывает воду и за счет этого количество свободной воды в газобетоне быстро уменьшается, а после окончания процесса газовыделения происходит быстрое схватывание смеси, в результате чего распалубочная прочность газобетона достигается за более короткое время по сравнению с прототипом. Переход гидроалюмината натрия из гелеобразного состояния в кристаллическое непосредственно в межпоровой перегородке способствует увеличению прочности как перегородок, так и всей смеси. В присутствии гипса гидроксид натрия взаимодействует с ним с частичным образованием сульфата натрия, который является ускорителем процессов гидратации и твердения цемента.
Кроме этого, двуводный гипс, находясь в коллоидном состоянии, реагирует с образовавшимся гидроалюминатом натрия в гелеобразной форме, в результате чего образуется натрийсодержащий гидросульфоалюминат кальция, структура которого подобна моногидросульфоалюминату кальция. Образование данного соединения позволяет сформировать более плотную и прочную межпоровую перегородку.
При использовании ускорителя твердения хлорида кальция выкристаллизовывается гидрохлоралюминат кальция, выполняющий микроармирующие функции, обеспечивает ускорение гидратации и твердения преимущественно на ранней стадии силикатных фаз цемента.
Фибра полиамидная размещается в образующихся межпоровых перегородках и создает пространственный сетчатый каркас, не позволяющий смеси осесть в процессе вспучивания. Кроме того, фибра полиамидная, располагаясь в межпоровых перегородках, армирует их также за счет образования пространственной армирующей сетки и тем самым повышает прочность всего затвердевшего массива газобетона.
При этом фибра полиамидная выполняет роль центров перекристаллизации первичных продуктов гидратации цемента. Фибра полиамидная более эффективно предотвращает образование трещин и микротрещин в газобетоне при усадке, повышает устойчивость к замораживанию/оттаиванию, проникновению воды и химических веществ, повышает прочность на изгиб газобетонных изделий, а также снижает риск откалывания углов и граней.
Совместное присутствие указанных веществ в смеси предлагаемого состава обеспечивает стабильность процесса поризации и получение смеси с прочностью 3-5 МПа при средней плотности 400-600 кг/м3, благодаря равномерной и однородной поровой структуре получается сырьевая смесь низкой плотности с более прочными характеристиками и низкой теплопроводностью.
Рассмотрим пример изготовления сырьевой смеси для газобетона.
Пример 1
Берут соответствующие рецепту сырьевой смеси дозировки, мас.%, портландцемента марки ЦЕМ I 42,5 Б - 37, золы-унос - 31,2, в миксер заливают воду с температурой 26°С в количестве 31,129, засыпают гидроксид натрия - 0,18 и хлористый кальций - 0,14, высыпают цемент и золу, перемешивают 4 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,06 и моющего порошка «Зифа» - 0,001, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,25 и фибру полиамидную - 0,04, готовую смесь перемешивают в течение 1 мин и выливают в форму.
После заливки полученной смеси в герметичную смазанную форму ее помещают в камеру термовлажностной обработки при температуре 35°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 2 раз в течение 25 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 8 ч до набора распалубочной прочности для дальнейшей резки.
Пример 2
Берут соответствующие рецепту сырьевой смеси дозировки, мас.%, портландцемента марки ЦЕМ I 42,5 Б - 55, золы-унос - 10,1, в миксер заливают воду с температурой 28°С в количестве 33,898, засыпают гидроксид натрия - 0,27 и хлористый кальций - 0,2, высыпают цемент и золу, перемешивают 5 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,1 и моющего порошка «Зифа» - 0,002, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,37 и фибру полиамидную - 0,06, готовую смесь перемешивают в течение 0,5 мин и выливают в форму.
После заливки полученной смеси в герметичную смазанную форму, ее помещают в камеру термовлажностной обработки при температуре 40°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 3-х раз в течение 30 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 6 ч до набора распалубочной прочности для дальнейшей резки.
Пример 3
Берут соответствующие рецепту сырьевой смеси дозировки, мас. %, портландцемента марки ЦЕМ I 42,5 Б - 35, золы-унос - 33, в миксер заливают воду с температурой 26°С в количестве 30,978, засыпают гидроксид натрия - 0,4 и хлористый кальций - 0,17, высыпают цемент и золу, перемешивают 4 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,06 и моющего порошка «Зифа» - 0,002, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,25 и фибру полиамидную - 0,14, готовую смесь перемешивают в течение 1 мин и выливают в форму.
После заливки полученной смеси в герметичную смазанную форму ее помещают в камеру термовлажностной обработки при температуре 35°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 2-х раз в течение 25 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 8 ч до набора распалубочной прочности для дальнейшей резки.
Физико-механические показатели сравнительных испытаний изделий, изготовленных по прототипу и предлагаемому изобретению, сведены в таблицу 2.
Использование предлагаемого изобретения позволило получить сырьевую смесь со стабилизацией процесса поризации смеси, снижением воздушной усадки, повышением трещиностойкости и прочности на изгиб, а также повысить прочность и морозостойкость изготавливаемых изделий из этой сырьевой смеси.
название | год | авторы | номер документа |
---|---|---|---|
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА | 2023 |
|
RU2823093C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА | 2013 |
|
RU2541340C1 |
Сырьевая смесь для изготовления теплоизоляционных полимерных композиционных материалов | 2021 |
|
RU2772611C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ | 2005 |
|
RU2283293C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ | 2007 |
|
RU2340582C1 |
СУХАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА (ВАРИАНТЫ) | 2013 |
|
RU2547532C1 |
СУХАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА ЯЧЕИСТОГО ГАЗОФИБРОБЕТОНА | 2008 |
|
RU2394007C2 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ЯЧЕИСТОГО ГАЗОБЕТОНА АВТОКЛАВНОГО ТВЕРДЕНИЯ | 2013 |
|
RU2543249C1 |
БЕТОННАЯ СМЕСЬ | 2023 |
|
RU2801028C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА | 2010 |
|
RU2411218C1 |
Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток. Сырьевая смесь для газобетона содержит, мас.%: портландцемент 35 - 55, золу-унос ТЭЦ-4 г. Омска 10,1 - 33, строительный гипс ГП-6 0,25 - 0,37, алюминиевую пасту 0,06 - 0,1, моющий порошок "Зифа" 0,001 - 0,002, гидроксид натрия 0,18 - 0,4, хлорид кальция 0,14 - 0,2, фибру полиамидную длиной 12-14 мм, диаметром 0,3-0,35 мкм 0,04 - 0,14, воду 30,978 - 33,898. Технический результат – повышение прочности, морозостойкости, снижение теплопроводности изделий из газобетона. 2 табл., 3 пр.
Сырьевая смесь для газобетона, включающая портландцемент, золу-унос ТЭЦ-4 г. Омска, строительный гипс ГП-6, моющий порошок "Зифа", алюминиевую пасту, гидроксид натрия, хлористый кальций и воду, отличающаяся тем, что содержит фибру полиамидную длиной 12-14 мм, диаметром 0,3-0,35 мкм при следующем соотношении компонентов, мас.%:
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА | 2013 |
|
RU2541340C1 |
СПОСОБ ПОЛУЧЕНИЯ ЯЧЕИСТОГО БЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ | 2001 |
|
RU2226517C2 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА С ПОНИЖЕННОЙ СРЕДНЕЙ ПЛОТНОСТЬЮ | 2006 |
|
RU2326096C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ АЭРИРОВАННОГО ГАЗОЗОЛОБЕТОНА С ПОНИЖЕННЫМ ВОДОСОДЕРЖАНИЕМ | 2005 |
|
RU2278093C1 |
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПРИГОТОВЛЕНИЯ АЭРИРОВАННОГО ЯЧЕИСТОГО БЕТОНА | 2004 |
|
RU2274626C2 |
Сырьевая смесь для изготовления ячеистых бетонов | 1979 |
|
SU863545A1 |
JP 56037266 A, 10.04.1981. |
Авторы
Даты
2017-11-15—Публикация
2016-06-08—Подача