СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА Российский патент 2017 года по МПК C04B38/02 C04B38/10 C04B40/02 

Описание патента на изобретение RU2635687C1

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток.

Известна сырьевая смесь и способ приготовления газобетона (см. патент РФ №2281267 С1, МПК - С04В, 38/00 опубл. 10.08.2006 г., Бюл. №22), содержащая, мас.%: портландцемент - 9,7-23,3, зола-унос ТЭЦ-7 г. Братск - 43,2-54, строительный гипс - 1,9-2,0, моющее средство МС «Тайга» - 0,2-0,21, алюминиевая пудра - 0,06-0,07, вода - остальное, а способ заключается в том, что сырьевую смесь укладывают в форму, после чего выдерживают 0,5-1 ч на виброплощадке с амплитудой вибрации 0,2-0,3 мм, частотой вибрации 50-100 Гц, осуществляют вспучивание смеси в течение 5-7 мин, пока форма находится на виброплощадке; изделия выдерживают в формах в течение 2-3 ч при температуре не ниже 20°С, затем срезают «горбушку» и помещают форму в камеру тепловлажностной обработки, и ведут обработку по режиму (3+5+2) при температуре изотермической выдержки 95°С.

Недостатками известного состава сырьевой смеси являются высокое водосодержание смеси, большая воздушная усадка и низкий коэффициент качества.

Известна также сырьевая смесь и способ изготовления газобетонных изделий (см. патент РФ №2274626 С2, МПК - С04В, 38/00 опубл. 20.04.2006 г., Бюл. №11), содержащая портландцемент, золу-унос ТЭЦ-7 г. Братска, моющее средство МС «Тайга» с содержанием до 98,6 мас.% кислот жирных таловых омыленных и до 0,5 мас.% натриевой соли карбоксиметилцеллюлозы, строительный гипс, при следующем соотношении компонентов, мас.%: портландцемент - 9,7-23,3, зола-унос ТЭЦ-7 г. Братск - 43,2-54,8, строительный гипс - 1,89-2,0, моющее средство МС «Тайга» - 0,16-0,23, алюминиевая пудра - 0,05-0,07, вода - остальное, а способ заключается в том, что перемешивают сухие компоненты, добавляют воды, отдельно готовят водную суспензию алюминиевой пудры и моющего средства МС «Тайга», перемешивают его 3-4 мин и вводят в смесь, перемешивают не более 1 мин, а тепловлажностную обработку осуществляют при 95°С.

Недостатками известного аналога являются невысокий коэффициент качества, недостаточная прочность при изгибе и высокая теплопроводность.

Наиболее близкой по технической сущности и достигаемому техническому результату является смесь, полученная из ячеистого бетона неавтоклавного твердения (см. патент RU №2226517 С2 МПК - С04В 38/10, опубл. 10.04.2004 г., Бюл. №10), содержащая мас.%: портландцемент - 43-90, кремнеземистый компонент - 5-45, ПАВ - 1-2, алюминат натрия - 0,75-2,5, пластификатор - 0,5-1,5, полиамидные нити длиной 3-5 мм - 2,75-6,0.

Недостатками известного прототипа являются невозможность обеспечения стабильных свойств газобетона, ограниченная область применения из-за появления усадочных деформаций и невысокой прочности газобетона.

Технической задачей предлагаемого изобретения является устранение указанных недостатков, техническим результатом которого будет повышение прочности, морозостойкости, снижение теплопроводности и соответственно высокий коэффициент качества неавтоклавного газобетона.

Указанный технический результат достигается за счет того, что сырьевая смесь для изготовления изделий из неавтоклавного газобетона, включающая портландцемент, золу-унос, моющий порошок, гипс строительный и воду, отличается тем, что содержит при следующем соотношении компонентов, мас.%: портландцемент - 35-55, в качестве золы-унос - золу-унос ТЭЦ-4 г. Омск - 10,1-33, в качестве гипса строительного - гипс строительный ГП-6 - 0,25-0,37, алюминиевую пасту - 0,06-0,1, в качестве моющего порошка - моющий порошок «Зифа» - 0,001 - 0,002, гидроксид натрия - 0,18-0,4, хлорид кальция - 0,14-0,2, фибра полиамидная длиной 12-14 мм и диаметром 0,30-0,35 мкм - 0,04-0,14, вода - 30,978-33,898.

В зависимости от назначения, конструктивных размеров газобетона и состава сырьевой смеси выбирают:

Портландцемент по ГОСТ 31108-2016 марок ЦЕМ I или ЦЕМ II с содержанием минеральных добавок 0-20%.

Зола-унос по ГОСТ 25818-91 от сжигания бурых углей Канско-Ачинского бассейна ТЭЦ-4 г. Омск содержит SiO2 не менее 45%, СаО не более 10%, SO3 не более 3%, влажность не более 0,05%.

Моющий порошок «Зифа» по ТУ 2381-023-00204872-2008 содержит в своем составе: соду, фосфаты, силикаты, сульфаты, энзимы и ферменты.

Фибра полиамидная по ГОСТ 16008-94, материал полиамид-6, длина 12-14 мм, диаметр 30-35 мкм, с плотностью 1,14 г/см3.

Вода техническая по ГОСТ 23732-2011.

Гипс строительный 2-водный ГП-6 по ГОСТ 4013-82.

Гидроксид натрия NaOH технический чешуированный по ГОСТ 2263-79, массовая доля не менее 98%.

Паста алюминиевая по ТУ 1791-001-757554739-2006. Массовая доля активного алюминия не менее 88,1%.

Хлорид кальция CaCl2 технический 2-водный по ГОСТ 450-77, массовая доля не менее 98%.

В известном прототипе применяются нити полиамидные длиной 3-5 мм с очень большой плотностью 187 текс, содержание их в составе, мас.% - 2,75-6,0.

Такой большой объем жестких полиамидных нитей затрудняет равномерное перемешивание всех компонентов смеси и не обеспечивает стабильные свойства газобетона по всему объему.

В предложенном изобретении используется полиамидное волокно-фибра длиной 12-14 мм с низкой плотностью 0,4 текс, содержание фибры в составе, мас.% - 0,04-0,14, что позволяет стабилизировать процесс поризации сырьевой смеси. За счет равномерного распределения полиамидной фибры по всему объему сырьевой смеси стабилизируются свойства готового газобетона.

Составы сырьевых смесей по прототипу и предлагаемому изобретению

В предлагаемой сырьевой смеси используется портландцемент марки ЦЕМ I 42,5 Б, что позволяет стабилизировать процесс поризации газобетонной смеси, значительно сократить сроки набора прочности изделиям за счет использования высокой гидравлической активности портландцемента и его способности генерировать высокодисперсные продукты гидратации, которые участвуют в формировании округлых замкнутых пор и прочных межпоровых перегородок, повысить прочность и морозостойкость изделий из газобетона.

Зола-унос ТЭЦ-4 г. Омск - кислая зола и является кремнеземистым заполнителем для газобетона, повышая его прочность и достаточный уровень долговечности.

Использование в предлагаемом составе алюминиевой пасты вместо пудры позволяет сократить время перемешивания алюминиевой суспензии, т.к. паста в отличие от пудры не так сильно пылит, еще одним отличием является сокращение количества используемого моющего порошка и снижение температуры воды.

Гидроксид натрия вводится в смесь для интенсификации процесса поризации смеси за счет более активного взаимодействия алюминиевой пасты с гидроксидом натрия с образованием гидроалюмината натрия. Соединение образуется непосредственно в смеси в гелеобразной форме и со временем кристаллизуется в виде гексагональных кристаллов слоистой структуры в составе межпоровых перегородок.

При кристаллизации гидроалюминат натрия связывает воду и за счет этого количество свободной воды в газобетоне быстро уменьшается, а после окончания процесса газовыделения происходит быстрое схватывание смеси, в результате чего распалубочная прочность газобетона достигается за более короткое время по сравнению с прототипом. Переход гидроалюмината натрия из гелеобразного состояния в кристаллическое непосредственно в межпоровой перегородке способствует увеличению прочности как перегородок, так и всей смеси. В присутствии гипса гидроксид натрия взаимодействует с ним с частичным образованием сульфата натрия, который является ускорителем процессов гидратации и твердения цемента.

Кроме этого, двуводный гипс, находясь в коллоидном состоянии, реагирует с образовавшимся гидроалюминатом натрия в гелеобразной форме, в результате чего образуется натрийсодержащий гидросульфоалюминат кальция, структура которого подобна моногидросульфоалюминату кальция. Образование данного соединения позволяет сформировать более плотную и прочную межпоровую перегородку.

При использовании ускорителя твердения хлорида кальция выкристаллизовывается гидрохлоралюминат кальция, выполняющий микроармирующие функции, обеспечивает ускорение гидратации и твердения преимущественно на ранней стадии силикатных фаз цемента.

Фибра полиамидная размещается в образующихся межпоровых перегородках и создает пространственный сетчатый каркас, не позволяющий смеси осесть в процессе вспучивания. Кроме того, фибра полиамидная, располагаясь в межпоровых перегородках, армирует их также за счет образования пространственной армирующей сетки и тем самым повышает прочность всего затвердевшего массива газобетона.

При этом фибра полиамидная выполняет роль центров перекристаллизации первичных продуктов гидратации цемента. Фибра полиамидная более эффективно предотвращает образование трещин и микротрещин в газобетоне при усадке, повышает устойчивость к замораживанию/оттаиванию, проникновению воды и химических веществ, повышает прочность на изгиб газобетонных изделий, а также снижает риск откалывания углов и граней.

Совместное присутствие указанных веществ в смеси предлагаемого состава обеспечивает стабильность процесса поризации и получение смеси с прочностью 3-5 МПа при средней плотности 400-600 кг/м3, благодаря равномерной и однородной поровой структуре получается сырьевая смесь низкой плотности с более прочными характеристиками и низкой теплопроводностью.

Рассмотрим пример изготовления сырьевой смеси для газобетона.

Пример 1

Берут соответствующие рецепту сырьевой смеси дозировки, мас.%, портландцемента марки ЦЕМ I 42,5 Б - 37, золы-унос - 31,2, в миксер заливают воду с температурой 26°С в количестве 31,129, засыпают гидроксид натрия - 0,18 и хлористый кальций - 0,14, высыпают цемент и золу, перемешивают 4 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,06 и моющего порошка «Зифа» - 0,001, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,25 и фибру полиамидную - 0,04, готовую смесь перемешивают в течение 1 мин и выливают в форму.

После заливки полученной смеси в герметичную смазанную форму ее помещают в камеру термовлажностной обработки при температуре 35°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 2 раз в течение 25 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 8 ч до набора распалубочной прочности для дальнейшей резки.

Пример 2

Берут соответствующие рецепту сырьевой смеси дозировки, мас.%, портландцемента марки ЦЕМ I 42,5 Б - 55, золы-унос - 10,1, в миксер заливают воду с температурой 28°С в количестве 33,898, засыпают гидроксид натрия - 0,27 и хлористый кальций - 0,2, высыпают цемент и золу, перемешивают 5 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,1 и моющего порошка «Зифа» - 0,002, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,37 и фибру полиамидную - 0,06, готовую смесь перемешивают в течение 0,5 мин и выливают в форму.

После заливки полученной смеси в герметичную смазанную форму, ее помещают в камеру термовлажностной обработки при температуре 40°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 3-х раз в течение 30 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 6 ч до набора распалубочной прочности для дальнейшей резки.

Пример 3

Берут соответствующие рецепту сырьевой смеси дозировки, мас. %, портландцемента марки ЦЕМ I 42,5 Б - 35, золы-унос - 33, в миксер заливают воду с температурой 26°С в количестве 30,978, засыпают гидроксид натрия - 0,4 и хлористый кальций - 0,17, высыпают цемент и золу, перемешивают 4 мин, отдельно готовят водную суспензию алюминиевой пасты - 0,06 и моющего порошка «Зифа» - 0,002, после чего вводят алюминиевую суспензию в основную смесь, добавляют строительный гипс ГП-6 - 0,25 и фибру полиамидную - 0,14, готовую смесь перемешивают в течение 1 мин и выливают в форму.

После заливки полученной смеси в герметичную смазанную форму ее помещают в камеру термовлажностной обработки при температуре 35°С, где происходит взаимодействие алюминиевой пасты с продуктами гидратации цемента, вследствие чего выделяется водород, смесь вспучивается и увеличивается в объеме до 2-х раз в течение 25 мин, затем происходит схватывание газобетонной смеси и ее твердение. Форму в камере выдерживают 8 ч до набора распалубочной прочности для дальнейшей резки.

Физико-механические показатели сравнительных испытаний изделий, изготовленных по прототипу и предлагаемому изобретению, сведены в таблицу 2.

Использование предлагаемого изобретения позволило получить сырьевую смесь со стабилизацией процесса поризации смеси, снижением воздушной усадки, повышением трещиностойкости и прочности на изгиб, а также повысить прочность и морозостойкость изготавливаемых изделий из этой сырьевой смеси.

Похожие патенты RU2635687C1

название год авторы номер документа
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА 2013
  • Брейтер Юрий Лазаревич
  • Полоумова Екатерина Николаевна
RU2541340C1
Сырьевая смесь для изготовления теплоизоляционных полимерных композиционных материалов 2021
  • Павлычева Елизавета Андреевна
  • Пикалов Евгений Сергеевич
RU2772611C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2005
  • Смиренская Вера Николаевна
  • Долотова Раиса Григорьевна
  • Верещагин Владимир Иванович
RU2283293C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2007
  • Смиренская Вера Николаевна
  • Долотова Раиса Григорьевна
  • Козлова Надежда Григорьевна
RU2340582C1
СУХАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА (ВАРИАНТЫ) 2013
  • Кривцов Евгений Евгеньевич
  • Хайруллин Марат Камилович
  • Зарецкий Олег Маркович
  • Сахащик Валерий Степанович
  • Мнацаканян Аветик Арменакович
RU2547532C1
СУХАЯ СМЕСЬ ДЛЯ ПРОИЗВОДСТВА ЯЧЕИСТОГО ГАЗОФИБРОБЕТОНА 2008
  • Ястремский Евгений Николаевич
RU2394007C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ЯЧЕИСТОГО ГАЗОБЕТОНА АВТОКЛАВНОГО ТВЕРДЕНИЯ 2013
  • Гольдман Феликс Александрович
  • Гадаев Натан Рафаилович
  • Соколова Екатерина Павловна
  • Штейнбук Тзви
RU2543249C1
БЕТОННАЯ СМЕСЬ 2023
  • Лесовик Валерий Станиславович
  • Клюев Сергей Васильевич
  • Лесовик Руслан Валерьевич
  • Сяо Вюньсюй
  • Федюк Роман Сергеевич
  • Панарин Игорь Иванович
RU2801028C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА 2010
  • Алыков Нариман Мирзаевич
  • Алыкова Анастасия Евгеньевна
  • Алыков Евгений Нариманович
  • Васько Юрий Павлович
  • Сахнова Варвара Александровна
RU2411218C1
СОСТАВ И СПОСОБ ДЛЯ ПОЛУЧЕНИЯ ГАЗОБЕТОНА 2007
  • Наравас Антон Казимирович
  • Смирнов Виктор Михайлович
  • Глушков Александр Петрович
RU2342346C1

Реферат патента 2017 года СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток. Сырьевая смесь для газобетона содержит, мас.%: портландцемент 35 - 55, золу-унос ТЭЦ-4 г. Омска 10,1 - 33, строительный гипс ГП-6 0,25 - 0,37, алюминиевую пасту 0,06 - 0,1, моющий порошок "Зифа" 0,001 - 0,002, гидроксид натрия 0,18 - 0,4, хлорид кальция 0,14 - 0,2, фибру полиамидную длиной 12-14 мм, диаметром 0,3-0,35 мкм 0,04 - 0,14, воду 30,978 - 33,898. Технический результат – повышение прочности, морозостойкости, снижение теплопроводности изделий из газобетона. 2 табл., 3 пр.

Формула изобретения RU 2 635 687 C1

Сырьевая смесь для газобетона, включающая портландцемент, золу-унос ТЭЦ-4 г. Омска, строительный гипс ГП-6, моющий порошок "Зифа", алюминиевую пасту, гидроксид натрия, хлористый кальций и воду, отличающаяся тем, что содержит фибру полиамидную длиной 12-14 мм, диаметром 0,3-0,35 мкм при следующем соотношении компонентов, мас.%:

портландцемент 35 - 55 зола-унос 10,1 - 33 гипс строительный ГП-6 0,25 - 0,37 алюминиевая паста 0,06 - 0,1 моющий порошок "Зифа" 0,001 - 0,002 гидроксид натрия 0,18 - 0,4 хлорид кальция 0,14 - 0,2 фибра полиамидная 0,04 - 0,14 вода 30,978 - 33,898

Документы, цитированные в отчете о поиске Патент 2017 года RU2635687C1

СЫРЬЕВАЯ СМЕСЬ ДЛЯ ГАЗОБЕТОНА 2013
  • Брейтер Юрий Лазаревич
  • Полоумова Екатерина Николаевна
RU2541340C1
СПОСОБ ПОЛУЧЕНИЯ ЯЧЕИСТОГО БЕТОНА НЕАВТОКЛАВНОГО ТВЕРДЕНИЯ 2001
  • Ухова Т.А.
  • Вотинцев В.С.
RU2226517C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА С ПОНИЖЕННОЙ СРЕДНЕЙ ПЛОТНОСТЬЮ 2006
  • Косых Анна Владимировна
  • Лужнова Елена Владимировна
  • Черномаз Денис Григорьевич
RU2326096C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ АЭРИРОВАННОГО ГАЗОЗОЛОБЕТОНА С ПОНИЖЕННЫМ ВОДОСОДЕРЖАНИЕМ 2005
  • Косых Анна Владимировна
  • Тугарина Анна Олеговна
RU2278093C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПРИГОТОВЛЕНИЯ АЭРИРОВАННОГО ЯЧЕИСТОГО БЕТОНА 2004
  • Косых Анна Владимировна
  • Тугарина Анна Олеговна
  • Корчинов Александр Сергеевич
RU2274626C2
Сырьевая смесь для изготовления ячеистых бетонов 1979
  • Лобанов Игорь Александрович
  • Пухаренко Юрий Владимирович
SU863545A1
JP 56037266 A, 10.04.1981.

RU 2 635 687 C1

Авторы

Чемисенко Олег Владимирович

Брейтер Юрий Лазаревич

Полоумова Екатерина Николаевна

Даты

2017-11-15Публикация

2016-06-08Подача