Изобретение относится к аналитической химии, а именно к способам определения ионов меди, и может быть применено в практике центральных заводских лабораторий, контрольно-аналитических лабораторий химических предприятий, химико-токсикологических лабораторий. Способ относится к числу массовых.
Известен способ определения ионов меди, заключающийся в обработке анализируемой пробы раствором диэтилдитиокарбаматом с последующим экстрагированием хлороформом и фотометрированием образующегося окрашенного раствора желтого или коричневого цвета [Лурье Ю.Ю., Рыбникова А.И. Химический анализ производственных сточных вод. М.: Химия, 1974].
Способ характеризуется трудоемкостью, позволяет определять самые малые следы меди.
Известен дитизоновый способ определения ионов меди, основанный на взаимодействии дитизона с ионом меди с образованием фиолетово-красного дитизоната меди, экстрагируемого четыреххлористым углеродом или хлороформом. [Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965 г.]
Способ характеризуется высокой чувствительностью, но и трудоемкостью, связанной с экстрагированием. Метод очень чувствителен и селективен.
Известен способ фотометрического определения ионов меди, основанный на взаимодействии с 2-2′-дихинолилом, с образованием окрашенного комплекса, экстрагируемого амиловым спиртом. [Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965 г.]
Способ наименее чувствителен, но достаточно селективен.
Наиболее близким по техническому решению и достигаемым результатам является пиридин-родановый метод. Путем обработки анализируемой пробы раствором роданида аммония и пиридином с последующим фотометрированием образующегося окрашенного комплекса, с последующим экстрагированием его хлороформом. [Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965 г.]
Способ характеризуется недостаточно высокой чувствительностью и трудоемкостью.
Задачей предлагаемого изобретения является повышение чувствительности способа и уменьшение трудоемкости.
Поставленная задача достигается с помощью предлагаемого способа, который заключается в том, что анализируемую пробу обрабатывают роданидом калия, обрабатывают раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиамония сульфат моногидратом, в реакционную среду добавляют ацетон, разбавляют водой и фотометрируют.
Сопоставительный анализ заявленного решения с прототипом показывает, что заявляемый способ отличается от известного тем, что в качестве цветореагента применяют раствор N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммоний сульфат моногидрат, а в образующийся окрашенный продукт добавляют ацетон.
Способ осуществляется следующим образом: анализируемую пробу обрабатывают роданидом калия, обрабатывают раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиамония сульфат моногидратом, в реакционную среду добавляют ацетон, разбавляют водой и фотометрируют.
Способ иллюстрируется следующим примером.
Пример
Количественное определение ионов меди.
Построение калибровочного графика.
В химические стаканы емкостью 50 мл вносили 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0 мл стандартного раствора Cu2+-ионов. Во все химические стаканы вносили по 1 мл водного раствора роданида калия (SCN- 1 мг/мл), по 5 мл 0,01% водного раствора N-этил-N(2-гироксиэтил)-1,4-фенилендиамония сульфат моногидрата и 7 мл ацетона. Далее окрашенные растворы оставляли на 10 минут. По истечении указанного времени окрашенные растворы переносили в мерные колбы емкостью 25 мл и объемы растворов доводили дистиллированной водой до метки, тщательно перемешивали, выдерживали еще 5 минут и измеряли оптическую плотность полученных окрашенных растворов с помощью фотоэлектроколориметра КФК-3 (λ=513 нм; длина рабочего слоя кюветы 5 см) на фоне контрольного опыта. Методом наименьших квадратов рассчитывают уравнение калибровочного графика, которое в данном случае имеет вид:
D=0,0242·C+0,012,
где D - оптическая плотность,
С - концентрация меди в фотометрируемом растворе мкг/мл.
Подчинение основному закону светопоглощения (Бугера-Ламбера-Бера) наблюдается в интервале концентраций 5-35 мкг/мл.
Методика количественного определения.
Согласно разработанной методике точные навески CuSO4 растворяли дистиллированной водой в мерных колбах емкостью 100 мл, затем объемы растворов в каждой колбе доводили до метки. После тщательного перемешивания в химические стаканы емкостью 50 мл вносили по 1 мл полученных растворов CuSO4, прибавляли 1 мл раствора роданида калия (SCN- 1 мг/мл), затем вносили 5 мл 0,01% водного раствора N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидрата и по 7 мл ацетона. Окрашенные растворы оставляли на 10 минут. По окончании указанного времени окрашенные растворы переносили в мерные колбы емкостью 25 мл и объем растворов доводили дистиллированной водой до метки и выдерживали еще 5 минут. Оптическую плотность окрашенных растворов измеряли с помощью фотоэлектроколориметра КФК-3 (λ=513 нм, рабочая длина кюветы 5 см). В качестве растворов сравнения применяли смеси всех перечисленных выше реактивов, взятых в соответствующих объемах. Количественное содержание ионов меди определяют по уравнению калибровочного графика и пересчитывают на навеску. Результаты определения и метрологические характеристики представлены в таблице 1.
Предлагаемый способ по сравнению с известным повышает чувствительность определения (открываемый минимум уменьшается с 15 мкг/мл до 5 мкг/мл). Сравнительная характеристика предлагаемого и известного способа представлена в таблице 2.
Результаты количественного определения ионов меди
Сравнительная характеристика предлагаемого и известного способов
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ РОДАНИД ИОНОВ | 2005 |
|
RU2301989C1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ЙОДА | 2010 |
|
RU2431824C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РОДАНИДА С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕТАКРИЛАТНОЙ МАТРИЦЫ | 2016 |
|
RU2624797C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РОДАНИДА | 2016 |
|
RU2619442C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЛАГЕНА | 1999 |
|
RU2169915C1 |
Способ определения хиноксидина | 1990 |
|
SU1735747A1 |
Способ количественного определения дитиокарбаматов в воздухе | 1990 |
|
SU1741031A1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ БЕНЗОЙНОЙ ИЛИ 2-ОКСИБЕНЗОЙНОЙ КИСЛОТ В ПРОБЕ, СОДЕРЖАЩЕЙ ОДНУ ИЗ НИХ | 1994 |
|
RU2084871C1 |
Способ определения дипрофена | 1980 |
|
SU930085A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СЛОЖНЫХ ЭФИРОВ АРОМАТИЧЕСКИХ ОКСИПРОИЗВОДНЫХ | 1997 |
|
RU2142125C1 |
Изобретение относится к измерительной технике. В способе анализируемую пробу обрабатывают роданидом калия и раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидрата, в продукт реакции добавляют ацетон, выжидают 10 минут, разбавляют водой и измеряют оптическую плотность окрашенного раствора на длине волны 513 нм. Технический результат - повышение чувствительности определения ионов меди. 2 табл.
Способ количественного определения ионов меди путем предварительной обработки анализируемой пробы роданидом калия, обработки цветореагентом с последующим фотометрированием образующегося окрашенного раствора, отличающийся тем, что в качестве цветореагента применяют 0,01%-ный раствор N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммоний сульфат моногидрата, добавляют ацетон, измеряют оптическую плотность окрашенного раствора на длине волны 513 нм и определяют количественное содержание ионов меди.
Способ определения меди | 1991 |
|
SU1797024A1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ РОДАНИД ИОНОВ | 2005 |
|
RU2301989C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИИ МЕДИ | 1992 |
|
RU2013766C1 |
ИНДИКАТОРНЫЙ СОСТАВ ДЛЯ ОПРЕДЕЛЕНИЯ МЕДИ (II) В ВОДНЫХ РАСТВОРАХ | 2002 |
|
RU2223488C1 |
Авторы
Даты
2010-04-20—Публикация
2008-02-26—Подача