ГНЕЗДОВОЙ БЛОК УСТРОЙСТВА ДЛЯ ПРОДУВКИ МЕТАЛЛА ГАЗАМИ В КОВШЕ Российский патент 2010 года по МПК B22D1/00 C21C7/72 

Описание патента на изобретение RU2388570C1

Изобретение относится к черной металлургии и может быть использовано при внепечной обработке металла газами в сталеразливочном ковше.

Наиболее близкими по технической сущности является гнездовой блок, входящий в состав устройства для продувки металла в ковше и устанавливаемый в футеровке подины ковша [1]. Гнездовой блок изготовлен монолитным из низкоцементного тиксотропного огнеупорного бетона корундового состава.

Недостатком известного гнездового блока является низкая стойкость вследствие низких огнеупорных свойств бетонов корундового состава на высокоглиноземистом цементе, который имеет огнеупорность 1710°С, так как основным компонентом цемента является алюминат кальция, имеющий температуру плавления 1600°С [2]. Вследствие этого в процессе службы блока при температуре более 1600°С происходит размывание верхних слоев бетона движущимся металлом, что обуславливает низкую стойкость блока.

Задачей, на решение которой направлено изобретение, является повышение стойкости гнездового блока.

Поставленная задача достигается за счет того, что предлагается гнездовой блок устройства для продувки металла газами в ковше, выполненный монолитным из тиксотропного огнеупорного бетона на высокоглиноземистом цементе с заполнителем из корунда, причем верхний слой блока толщиной не менее половины его высоты изготовлен из бетона, заполнитель которого содержит полидисперсную смесь корунда фракции более 0,09 мм и стабилизированный диоксид циркония фракции менее 0,09 мм.

Такие отличительные особенности позволяют повысить стойкость блока за счет увеличения огнеупорных свойств бетонов. В процессе службы высокоглиноземистого цемента происходит его разложение на оксиды кальция и алюминия. Оксид кальция взаимодействует с диоксидом циркония с образованием цирконата кальция, плавящегося при температуре 2330°С [3]. В присутствии оксида алюминия цирконат кальция не образует легкоплавких эвтектик, что существенно повышает огнеупорные свойства предлагаемого блока.

Предлагаемый гнездовой блок выполнен монолитным, состоящим по высоте из двух слоев тиксотропного огнеупорного бетона на высокоглиноземистом цементе с заполнителем из корунда. Верхний слой блока толщиной не менее половины его высоты изготовлен из бетона, заполнитель которого содержит полидисперсную смесь корунда фракции более 0,09 мм и стабилизированный диоксид циркония фракции менее 0,09 мм.

Тонкодисперсные порошки обладают наибольшей реакционной способностью и при появлении жидкой фазы алюмината кальция, диоксид циркония взаимодействует с окисью кальция, препятствуя размягчению структуры блока и его преждевременному износу. Поскольку процесс образования цирконата кальция может происходить, начиная с температуры 1000°С, то взаимодействие окиси кальция цемента с диоксидом циркония может происходить как акт твердофазового спекания без образования жидкой фазы. При этом важную роль играет то, что размеры зерен диоксида циркония соизмеримы с размерами зерен высокоглиноземистого цемента, что локализует и ускоряет процесс взаимодействия.

Замена стабилизированного диоксида циркония цирконом ведет к снижению стойкости, так как температура плавления циркона составляет 1538°С [4].

Изготовление гнездового блока производят в разборной металлической форме, в донной части которой закреплен шаблон, имеющий форму фурмы. Металлическую форму закрепляют на вибростоле. При непрерывном вибрировании на дно формы укладывают бетонную смесь с заполнителем из корунда. При заполнении формы на высоту менее половины высоты блока производят укладку смеси со стабилизированным диоксидом циркония. По завершению укладки в бетон погружают монтажную петлю из проволоки, производят выдержку бетона в течение 1 суток. После затвердевания бетона блок извлекают из формы и производят его термообработку для удаления влаги кристаллогидратов.

Результаты испытаний опытных блоков показали, что по сравнению с блоками из бетона с заполнителем из корунда их стойкость увеличивается в 1,8…2,2 раза.

Конкретный пример выполнения блока.

Для продувки металла в сталеразливочных ковшах КС-160 изготавливают гнездовой блок с размерами в плане 350×350 мм высотой 340 мм. Нижнюю часть блока изготавливают из бетона следующего состава (мас.%):

- Белый корунд (7-4 мм) - 35

- Белый корунд (2-1 мм) - 15

- Белый корунд (1-0,5 мм) - 12

- Молотый корунд (0,5-0,09 мм) - 10

- Тонкомолотый корунд (менее 0,09 мм) - 20

- Высокоглиноземистый цемент - 8

- Влажность бетонной смеси - 4,5-5%.

Укладку данного бетона производят на толщину слоя 160 м. Верхнюю часть блока изготавливают из бетона следующего состава (мас.%):

- Белый корунд (7-4 мм) - 35

- Белый корунд (2-1 мм) - 15

- Белый корунд (1-0,5 мм) - 12

- Молотый корунд (0,5-0,09 мм) - 10

- Тонкомолотый стабилизированный диоксид циркония (менее 0,09 мм) - 20

- Высокоглиноземистый цемент - 8

- Влажность бетонной смеси - 4,5-5%.

По результатам испытаний предлагаемых блоков в зависимости от толщины верхнего слоя бетона стойкость по сравнению с блоками из обычного бетона корундового состава увеличилась в 1,8…2,2 раза. При этом толщина верхнего слоя бетона варьировалась от 0,5 до 0,7 высоты блока. При большей толщине происходит удорожание стоимости блока без увеличения его стойкости.

При увеличении крупности стабилизированного диоксида циркония эффект увеличения стойкости гнездового блока снижается.

Источники информации

1. Патент РФ №2180279, кл. B22D 41/58, опубл. 10.03.2002, бюл. №7.

2. Служба огнеупоров: справ. изд. / Л.М.Аксельрод и др., под редакцией И.Д.Кащеева, Е.Е.Гришенкова. - М.: Интернет Инжиниринг, 2002 - 656 с.

3. Стрелов К.К., Кащеев И.Д., Мамыкин П.С. Технология огнеупоров. - М.: Металлургия, 1988, 528 с.

4. Рузинов Л.П., Гуляницкий Б.С. Равновесные превращения металлургических реакций. - М.: Металлургия, 1975, 416 с.

Похожие патенты RU2388570C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ МАСС ДЛЯ МОНОЛИТНЫХ ФУТЕРОВОК 1998
  • Пивинский Ю.Е.
  • Гришпун Е.М.
  • Рожков Е.В.
RU2153480C2
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2015
  • Денисов Дмитрий Евгеньевич
  • Жидков Андрей Борисович
  • Аксельрод Лев Моисеевич
  • Власовец Сергей Анатольевич
  • Долгих Сергей Владимирович
RU2579092C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ НЕЕ БЕТОНА 2012
  • Кузнецов Денис Валерьевич
  • Костицын Максим Анатольевич
  • Близнюков Александр Стефанович
  • Конюхов Юрий Владимирович
  • Митрофанов Артем Викторович
RU2530137C2
ОГНЕУПОРНАЯ БЕТОННАЯ МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ФУТЕРОВКИ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АГРЕГАТОВ 2006
  • Макаров Дмитрий Николаевич
  • Шабуров Дмитрий Валентинович
  • Антонов Виталий Иванович
  • Артюшов Вячеслав Николаевич
  • Маркин Валерий Михайлович
  • Шаимов Марсель Харисович
  • Мироненко Наталья Леонидовна
  • Холодова Софья Михайловна
  • Вещиков Геннадий Кириллович
RU2325364C1
ОГНЕУПОРНАЯ БЕТОННАЯ КОМПОЗИЦИЯ 2014
  • Аксельрод Лев Моисеевич
  • Лаптев Александр Павлович
  • Донич Римма Абрамовна
RU2550626C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2006
  • Можжерин Владимир Анатольевич
  • Сакулин Вячеслав Яковлевич
  • Мигаль Виктор Павлович
  • Новиков Александр Николаевич
  • Салагина Галина Николаевна
  • Штерн Евгений Аркадьевич
  • Маргишвили Алла Петровна
  • Громова Лариса Юрьевна
  • Русакова Галина Владимировна
  • Алексеев Павел Евгеньевич
  • Гвоздева Ирина Александровна
  • Степанова Лариса Васильевна
RU2320617C2
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 1999
  • Кабаргин С.Л.
  • Ермолычев Д.А.
  • Аксельрод Л.М.
  • Чуприна Н.А.
  • Егоров И.В.
RU2140407C1
Бикерамический стакан для разливки стали 1990
  • Усатиков Иван Федорович
  • Караулов Анатолий Григорьевич
  • Шляхова Тамара Михайловна
  • Данильченко Николай Михайлович
  • Рыбка Николай Павлович
  • Тонкушин Анатолий Федорович
  • Пушко Тамара Петровна
  • Браверман Ефим Михайлович
  • Крикунов Борис Петрович
SU1752506A1
Огнеупорная масса для изготовления безобжиговых монолитных футеровок 1984
  • Караулов Анатолий Григорьевич
  • Усатиков Иван Федорович
  • Михальчук Неонила Моисеевна
  • Сударкина Тамара Ефимовна
SU1293157A1
Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов 2016
  • Рычков Сергей Андреевич
  • Клестов Олег Геральдович
  • Речкалов Андрей Анатольевич
  • Демин Евгений Николаевич
  • Хохлов Валерий Александрович
RU2625580C1

Реферат патента 2010 года ГНЕЗДОВОЙ БЛОК УСТРОЙСТВА ДЛЯ ПРОДУВКИ МЕТАЛЛА ГАЗАМИ В КОВШЕ

Изобретение относится к металлургии. Гнездовой блок выполнен монолитным из тиксотропного огнеупорного бетона на высокоглиноземистом цементе с заполнителем из корунда. Верхний слой блока толщиной не менее половины его высоты изготовлен из бетона, заполнитель которого содержит полидисперсную смесь корунда фракции более 0,09 мм и стабилизированный диоксид циркония фракции менее 0,09 мм. Обеспечивается повышение стойкости гнездового блока.

Формула изобретения RU 2 388 570 C1

Гнездовой блок устройства для продувки металла газами в ковше, выполненный монолитным из тиксотропного огнеупорного бетона на высокоглиноземистом цементе с заполнителем из корунда, отличающийся тем, что верхний слой блока, толщиной не менее половины его высоты, изготовлен из бетона, заполнитель которого содержит полидисперсную смесь корунда фракции более 0,09 мм и стабилизированный диоксид циркония фракции менее 0,09 мм.

Документы, цитированные в отчете о поиске Патент 2010 года RU2388570C1

УСТРОЙСТВО ДЛЯ ПРОДУВКИ МЕТАЛЛА ГАЗАМИ В КОВШЕ И ЗАЩИТНЫЙ КЛАПАН ДЛЯ ЭТОГО УСТРОЙСТВА 2000
  • Воробьев Н.И.
  • Антонов В.И.
  • Соснин В.П.
  • Яськин В.Н.
  • Горбачев В.В.
  • Гусев А.А.
  • Валентинов Г.А.
  • Мокринский А.В.
RU2180279C2
RU 2007112222 A, 10.10.2008
УСТРОЙСТВО ДЛЯ ДОННОЙ ПРОДУВКИ МЕТАЛЛА ГАЗОМ, СПОСОБ ИЗГОТОВЛЕНИЯ ПРОДУВОЧНОГО МОНОБЛОКА И ОГНЕУПОРНЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ МОНОБЛОКА 2003
  • Клещеногов С.Н.
  • Чуклай А.М.
  • Фролов О.И.
  • Гущин В.Я.
RU2255118C1

RU 2 388 570 C1

Авторы

Левада Антон Григорьевич

Мокринский Андрей Викторович

Макаров Дмитрий Николаевич

Антонов Виталий Иванович

Шабуров Дмитрий Валентинович

Соснин Валерий Павлович

Маркин Валерий Михайлович

Даты

2010-05-10Публикация

2008-12-05Подача