ЭЛЕКТРОПРОВОДЯЩАЯ ПАСТА Российский патент 2010 года по МПК H01B1/22 

Описание патента на изобретение RU2389095C2

Изобретение относится к технологии изготовления толстопленочных структур методом трафаретной печати и может быть использовано в электронной технике при производстве индикаторных приборов, в частности катодолюминесцентных дисплеев.

Известны пасты для трафаретной печати, которые включают в себя три составляющие: функциональная составляющая, конструкционная составляющая (постоянное связующее) и технологическая составляющая (временное связующее) (см. Смирнов В.И. Физико-химические основы технологии электронных средств: учебное пособие. - Ульяновск: УлГТУ, 2005 г., 112 с.).

Функциональной фазой электропроводящих паст является мелкодисперсный порошок (размер частиц порядка единиц микрометров) благородных металлов (Ag, Pd, Au), обладающих высокой проводимостью, химической стойкостью и особыми технологическими свойствами, например способностью к сварке и пайке.

Конструкционная составляющая - это мелкодисперсные частицы стекла (стеклофритта), температура плавления которого ниже температуры вжигания. В частности, широко используются свинцовоборосиликатные стекла с температурой плавления менее 600°С. В процессе вжигания расплавленное стекло смачивает частицы функциональной фазы, образуя суспензию, а после охлаждения и затвердевания образуется механически прочное покрытие с квазиравномерным распределением частиц функциональной фазы. Обычно соотношение функциональной составляющей и стеклянной фритты примерно равно 9:1. При таком соотношении компонентов возможен массовый взаимный контакт металлических частиц.

Технологическая составляющая играет роль временной технологической связки (биндера), придающей пасте определенную вязкость и пластичность. Эта составляющая содержит органические вещества, например раствор этилцеллюлозы в терпинеоле с добавлением дибутилфталата и каприновой кислоты (см. патент РФ №2020618, МКИ5: H01B 1/02, опубл. 30.09.1994 г.). Растворитель впоследствии испаряется в процессе сушки, а органическое вещество разлагается или сгорает при вжигании и полностью удаляется.

Недостатком известных токопроводящих паст является необходимость их вжигания при высокой температуре (450-600°С), которая определяется температурой плавления стеклофритты. Этот фактор не позволяет, в частности, использовать такие пасты для формирования межсоединений на полимерных подложках. Кроме того, температура повторного расплавления сформированной токопроводящей дорожки практически равна температуре вжигания, что ограничивает выбор технологических режимов для последующих операций.

С целью преодоления указанных недостатков в ряде публикаций предлагалось использовать в качестве функциональной составляющей стабилизированный органическими соединениями нанодисперсный порошок серебра с размером частиц 10-100 нм. Особенностью данного материала является его способность к спеканию путем диффузии при относительно низких температурах (150-300°С в зависимости от размера частиц и температуры выгорания стабилизатора). Образующийся в результате этого процесса слой металла по некоторым параметрам, в частности, проводимости и температуре повторного плавления, близок к монолитному серебру. Дополнительным преимуществом подобных паст является отсутствие в их составе свинцовосодержащих стекол, что делает их более экологически безопасными.

Наиболее близким аналогом по составу компонентов и свойствам к изобретению-прототипу является паста, описанная в международной заявке WO №2005/079353, МКИ: H01B 1/22, H01B 1/24, H01B 3/00, опубл. 01.09.2005 г. Паста-прототип содержит нанодисперсный порошок серебра с размерами частиц до 100 нм, стабилизированный жирными кислотами, поливиниловый спирт или поливинилбутираль в качестве биндера, и терпинеол в качестве растворителя. Количество органических компонентов в пасте составляет предпочтительно от 5 до 20 вес.%. Температура вжигания пасты-прототипа составляет 300°С (определяется температурами кипения растворителя и выгорания биндера).

Паста-прототип имеет следующие недостатки:

- из-за высокой удельной поверхности нанодисперсного порошка серебра паста указанного состава имеет высокую вязкость, что препятствует ее использованию для трафаретной печати с высоким разрешением. Рисунок проводника получается нестабильным и содержит много нарушений, приводящих к нарушению электрической целостности проводника;

- воженный слой серебра имеет высокий модуль пластической деформации, что может приводить к его растрескиванию из-за разницы коэффициентов термического расширения серебра и материала подложки.

Перечисленные недостатки заявленным техническим решением устраняются.

Сущность изобретения заключается в следующем.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке электропроводящей пасты для формирования проводящих дорожек методом трафаретной печати с высоким разрешением, имеющей температуру вжигания не выше 300°С.

Указанный технический результат при осуществлении изобретения достигается тем, что в известной электропроводящей пасте, содержащей органическое связующее и неорганическую составляющую, в качестве неорганической составляющей содержится стабилизированный нанодисперсный порошок серебра с размерами частиц в диапазоне 20-50 нм и мелкодисперсный порошок серебра с размерами частиц в диапазоне 1-5 мкм при следующем соотношении компонентов, мас.%:

органическое связующее 20-40 нанодисперсный порошок серебра 10-20 мелкодисперсный порошок серебра 60-85

В качестве органической (технологической) составляющей предлагаемая паста содержит растворитель, например терпинеол; полимер, обеспечивающий необходимый уровень тиксотропности, например, этилцеллюлозу; пластификатор, например дибутилфталат, и диспергатор, например олеиновую кислоту.

Реологические свойства пасты зависят как от доли нанодисперсного серебра в неорганической составляющей, так и от соотношения между неорганической и органической составляющими, и могут регулироваться в некоторых пределах для достижения оптимального качества нанесения рисунка при заданном разрешении (шаге сетки). Снижение доли нанодисперсного серебра в неорганической составляющей ниже 10% приводит к ослаблению связи между мелкодисперсными частицами серебра и, как следствие, к ухудшению механических характеристик проводящего слоя. Увеличение же доли нанодисперсного серебра выше указанного предела 20% приводит к повышению вязкости пасты, которое уже не может быть скомпенсировано ее разбавлением, так как при этом недопустимо снижается толщина проводящих дорожек.

Пример конкретного выполнения.

Для формирования токопроводящих дорожек шириной 200 мкм в катодолюминесцентных дисплеях (материал подложки - натриевое стекло) была приготовлена паста следующего состава:

мелкодисперсное серебро (dср=1,5 мкм) 65 нанодисперсное серебро (dср=40 нм) 15 этилцеллюлоза К-100 1,0 терпинеол 16,2 дибутилфталат 2,0 олеиновая кислота 0,8

Нанодисперсный порошок серебра был изготовлен методом плазменного испарения и переконденсации на опытно-промышленной установке для получения нанопорошков разработки ООО «Нано-тех». После окончания процесса и выгрузки продукта необходимая фракция порошка была стабилизирована путем смешивания с раствором олеиновой кислоты в терпинеоле. Полученная суспензия была обработана ультразвуком с целью разрушения агломератов.

Технология изготовления пасты состояла из следующих операций:

- растворение этилцеллюлозы в смеси терпинеола и дибутилфталата при 70-80°С до полного растворения и получения однородной композиции;

- смешивание полученного органического связующего с суспензией нанодисперсного серебра в терпинеоле;

- смешивание в миксере полученной суспензии с порошком мелкодисперсного серебра;

- гомогенизация полученной смеси на установке перетирки паст.

Были изготовлены несколько образцов пасты, различающиеся долей нанодисперсного серебра в неорганической составляющей. Вязкость паст приводилась к необходимой для трафаретной печати величине путем подбора соотношения органической и неорганической составляющих. Составы опытных образцов паст приведены в таблице 1.

Таблица 1 Содержание, мас.% № образца Мелкодисперсное серебро dcp=1,6 мкм Нанодисперсное серебро dср=40 нм Органическое связующее 1 72 8 20 2 60 10 30 3 45 15 40 4 40 20 40

Пробная печать проводилась при установке трафаретной печати типа ЭВ-8135 с использованием сетчатого трафарета №00064. Термообработка плат с нанесенными дорожками проводилась в конвейерной печи с максимальной температурой 300°С. Время прохода зоны с максимальной температурой составляло 10 минут.

Результаты опробования приведены в таблице 2.

Таблица 2 № образца Толщина слоя, мкм Разрешающая способность, мкм Примечание 1 8-10 75-90 Слой местами рыхлый, имеет разрывы. 2 8-10 75-90 Дефекты отсутствуют. 3 5-7 80 -120 Слой тонкий, есть растрескивания.

Технико-экономическая эффективность заявляемого технического решения заключается в следующем:

- высокая надежность готовых катодолюминесцентных дисплеев с нанесенной электропроводящей пастой по заявленному техническому решению;

- экономия материалов при изготовлении электропроводящей пасты по заявляемому техническому решению, вследствие чего понижается стоимость самих катодолюминесцентных дисплеев;

- открывается возможность замены трудоемкого фотолитографического способа формирования токопроводящих дорожек в дисплеях на полимерной подложке и дисплеях с активной матрицей на дешевый и производительный метод трафаретной печати;

- снижается экологическая опасность производства благодаря исключению из состава пасты компонентов, содержащих соединения свинца.

Похожие патенты RU2389095C2

название год авторы номер документа
ТОКОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ 2015
  • Иванов Александр Андреевич
  • Туев Василий Иванович
RU2612717C2
АЛЮМИНИЕВАЯ ПАСТА ДЛЯ КРЕМНИЕВЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ 2013
  • Булгакова Александра Александровна
  • Витюк Сергей Владимирович
  • Власенко Максим Михайлович
  • Гаранжа Светлана Борисовна
  • Куцевалова Лидия Егоровна
  • Пономаренко Мария Александровна
  • Шалько Нина Ивановна
RU2531519C1
ВАКУУМНЫЙ КАТОДОЛЮМИНЕСЦЕНТНЫЙ ДИСПЛЕЙ С ПОЛЕВОЙ ЭМИССИЕЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1999
  • Горфинкель Б.И.
  • Миронов Б.Н.
  • Михайлова В.В.
  • Финкельштейн С.Х.
  • Хазанов А.А.
  • Зелепукин А.В.
RU2174268C2
ТОКОПРОВОДЯЩАЯ СЕРЕБРЯНАЯ ПАСТА ДЛЯ ТЫЛЬНОГО ЭЛЕКТРОДА СОЛНЕЧНОГО ЭЛЕМЕНТА 2012
  • Пономаренко Мария Александровна
  • Шалько Нина Ивановна
  • Булгакова Александра Александровна
  • Пономаренко Андрей Юрьевич
  • Витюк Сергей Владимирович
RU2496166C1
Органическое связующее проводниковых и диэлектрических паст 1989
  • Артамонов Анатолий Александрович
  • Могила Надежда Ивановна
  • Пивень Анна Николаевна
  • Ляшенко Людмила Алексеевна
  • Брагин Владимир Петрович
  • Косова Людмила Николаевна
  • Дьяконенко Юрий Павлович
SU1689996A1
Электропроводящая паста 1990
  • Счастнев Вениамин Владимирович
  • Ялынычева Татьяна Ивановна
  • Филипченко Владимир Яковлевич
SU1739389A1
СПОСОБ МЕТАЛЛИЗАЦИИ АЛЮМОНИТРИДНОЙ КЕРАМИКИ 2020
  • Непочатов Юрий Кондратьевич
  • Плетнёв Петр Михайлович
  • Красный Иван Борисович
  • Денисова Анастасия Аркадьевна
RU2759248C1
Алюминиевая паста для изготовления тыльного контакта кремниевых солнечных элементов c тыльной диэлектрической пассивацией 2018
  • Власенко Максим Михайлович
  • Головин Вячеслав Геннадиевич
  • Митченко Иван Сергеевич
  • Родионов Андрей Сергеевич
  • Сердюк Алексей Владимирович
RU2690091C1
Органическое связующее для электропроводящих и диэлектрических паст 1988
  • Артамонов Анатолий Александрович
  • Ляшенко Людмила Алексеевна
  • Могила Надежда Ивановна
  • Пивень Анна Николаевна
  • Брагин Владимир Петрович
  • Мерченко Ирина Борисовна
  • Савенко Василий Васильевич
SU1631609A1
ЭЛЕКТРОПРОВОДЯЩАЯ ПАСТА 1992
  • Зелепукин А.В.
  • Филипченко В.Я.
  • Ялынычева Т.И.
RU2020618C1

Реферат патента 2010 года ЭЛЕКТРОПРОВОДЯЩАЯ ПАСТА

Изобретение относится к технологии изготовления толстопленочных структур методом трафаретной печати и может быть использовано в электронной технике при производстве индикаторных приборов, в частности катодолюминесцентных дисплеев. Технический результат - разработка электропроводящей пасты для формирования проводящих дорожек методом трафаретной печати с высоким разрешением, имеющей температуру не выше 300°С. Достигается тем, что в электропроводящей пасте, содержащей органическое связующее и неорганическую составляющую, в качестве неорганической составляющей содержится стабилизированный нанодисперсный порошок серебра с размерами частиц в диапазоне 20-50 нм и мелкодисперсный порошок серебра с размерами частиц в диапазоне 1-5 мкм при следующем соотношении компонентов, мас.%:

органическое связующее 20-40 нанодисперсный порошок серебра 10-20 мелкодисперсный порошок серебра 60-85

2 табл.

Формула изобретения RU 2 389 095 C2

Электропроводящая паста, содержащая органическое связующее и неорганическую составляющую, отличающаяся тем, что в качестве неорганической составляющей содержит стабилизированный нанодисперсный порошок серебра с размерами частиц в диапазоне 20-50 нм и мелкодисперсный порошок серебра с размерами частиц в диапазоне 1-5 мкм при следующем соотношении компонентов, мас.%:
органическое связующее 20-40 нанодисперсный порошок серебра 10-20 мелкодисперсный порошок серебра 60-85

Документы, цитированные в отчете о поиске Патент 2010 года RU2389095C2

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
ЭЛЕКТРОПРОВОДЯЩАЯ ПАСТА 1992
  • Зелепукин А.В.
  • Филипченко В.Я.
  • Ялынычева Т.И.
RU2020618C1
Токопроводящая паста для формирования наружных электродов монолитных конденсаторов и способ ее получения 1991
  • Писаренко Валентина Ивановна
  • Костомаров Владимир Степанович
  • Харламова Лидия Панаидовна
  • Чкалова Валентина Николаевна
SU1820948A3
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1

RU 2 389 095 C2

Авторы

Зелепукин Андрей Владимирович

Хазанов Александр Анатольевич

Даты

2010-05-10Публикация

2008-03-25Подача