СПОСОБ КИСЛОТНОЙ ПЕРЕРАБОТКИ БЕДНЫХ ФОСФОРИТОВ Российский патент 2010 года по МПК C05B11/00 

Описание патента на изобретение RU2389712C2

Изобретение относится к области промышленности удобрений, в частности к производству сложных минеральных удобрений путем кислотного разложения природных фосфатов.

Настоящее изобретение позволяет вовлечь в производство квалифицированных фосфорных удобрений низкокачественное минеральное сырье, отличающееся низким содержанием оксида фосфора V (Р2О5), загрязненное примесями железа, алюминия и других переходных металлов, а также содержащее до 20 мас.%, нерастворимых в кислоте силикатных пород, образующих трудноотделимый остаток. Примером такого сырья могут служить фосфориты Вятско-Камского, Егорьевского, Полпинского месторождений.

Известен способ получения сложных удобрений, защищенный патентом РФ №2145316, Кл. С05В 11/06, опубл. 2000.02.10. Способ включает разложение апатитового концентрата азотной кислотой, выделения нитрата кальция кристаллизацией, нейтрализацию азотно-фосфатной вытяжки аммиаком, выпарку, смешение с плавом нитрата аммония и калийной солью, грануляцию и сушку готового продукта. После отделения нитрата кальция азотно-фосфатную вытяжку смешивают с низкокачественным фосфоритным сырьем в отношении Р2О5 фосфорита к Р2О5 апатита как 0,05-0,8:1 до или после аммонизации или после выпарки.

Недостатком известного способа является высокое содержание примесей железа и алюминия в конечном продукте, что приводит к потерям усвояемого фосфора в конечном продукте. Также не рассматривается вопрос отделения трудно фильтруемого нерастворимого силикатного остатка, который также переходит в конечный продукт и, являясь балластной примесью, ухудшает его качество. И наконец, описанное изобретение не позволяет перерабатывать низкокачественное фосфоритное сырье без использования апатитового концентрата.

Известен способ переработки Вятско-Камского фосфорита, защищенный патентом РФ №2174969, Кл. С05В 11/06, опубл. 2001.10.20.

Фосфоритную муку вятско-камского фосфорита перед обработкой азотной кислотой обрабатывают при перемешивании щелочным раствором, предпочтительно 3%-ным раствором едкого натра при 95-100°С в течение 2-4 ч, отделяют от щелочного раствора фильтрацией, затем обрабатывают неконцентрированной азотной кислотой, отделяют нерастворимый остаток с применением фильтрации, полученный раствор перерабатывают в удобрение. Нерастворимый остаток промывают отработанным щелочным раствором, полученный при этом раствор, содержащий нитрат и гумат натрия, может быть введен в состав удобрения для повышения его питательной ценности. Способ позволяет перерабатывать вятско-камские фосфориты без предварительной прокалки сырья.

Недостатками известного способа являются необходимость предварительной щелочной обработки сырья, что усложняет технологическую схему переработки. Производительность фильтрования нерастворимого в кислоте остатка остается низкой, из-за чего требуется применение сложной и дорогостоящей аппаратуры - фильтр-прессов. Несмотря на удаление гуминовых кислот сохраняется заметное пенообразование. Вопросы отделения соединений переходных металлов не рассматриваются.

Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ, защищенный патентом РФ №2154045, Кл. С05В 11/06, опубл. 2000.08.10. Авторы предлагают фосфоритное сырье, в частности бедные фосфориты Вятско-Камского месторождения, подвергать прокаливанию при температуре 850-1150°С, затем разлагать прокаленный фосфорит разбавленной азотной кислотой, разбавлять полученную суспензию водой в отношении 1-1,5:1, удалять отстаиванием нерастворимый остаток и упаривать добавленную воду. Затем авторы предлагают отделять нитрат кальция вымораживанием, раствор аммонизировать и перерабатывать в удобрение типа NP или NPK путем упарки, гранулирования и сушки.

Серьезными недостатком этого метода является необходимость разбавления суспензии и последующего упаривания фосфорно-кислотного раствора, что связано с повышенными затратами тепла, введением дополнительной стадии в процесс переработки, усиленной коррозией оборудования. Кроме того, не решаются вопросы загрязнения фосфорно-кислотного раствора примесями переходных металлов, возможности отделения нерастворимого остатка фильтрованием и иными методами, возможность применения иных минеральных кислот, кроме азотной.

Задача настоящего изобретения состоит в усовершенствовании способа кислотной переработки бедных фосфоритов с возможностью получения квалифицированных фосфорных и комплексных удобрений, не содержащих балластных примесей и неусвояемого растениями фосфора, исходя из бедного фосфоритного сырья, в частности - фосфоритного концентрата Вятско-Камского, Егорьевского, Полпинского месторождений.

Технический результат от использования изобретения заключается в повышении производительности за счет ускорения фильтрования нерастворимого остатка, удаления примесей железа и алюминия из фосфорно-кислотного раствора, исключение стадий разбавления и упаривания фосфорно-кислотного раствора.

Указанный результат достигается тем, что в способе кислотной переработки бедных фосфоритов, включающем предварительное прокаливание минерального сырья, кислотное разложение, отделение фосфорно-кислотного раствора от нерастворимого остатка с последующей переработкой его в фосфорное или комплексное удобрение, после прокаливания минерального сырья производят его измельчение до частиц размером 3,1-5 мм, при этом кислотное разложение измельченного сырья проводят при комнатной температуре. Кислотное разложение измельченного сырья проводят соляной или азотной кислотами или смесью азотной и серной кислот, содержащей до 25 мас.% серной кислоты. Фосфорно-кислотный раствор отделяют от нерастворимого остатка фильтрованием при температуре 50-60°С.

Для разложения используют соляную, азотную кислоты или смесь азотной и серной кислот, разложение проводят при комнатной температуре, после чего нерастворимый остаток отделяют фильтрованием при 50-60°С.

Таким образом, для достижения указанного технического результата предлагается подвергать фосфатные минералы после предварительного обжига рассеиванию, что позволяет изменить структуру нерастворимого остатка и улучшить условия его отделения. Одновременно, за счет происходящих в процессе обжига превращений и подбора условий кислотного разложения, пассивируются примесные соединения железа, алюминия и других переходных металлов. Все это позволяет получать фосфорные и комплексные минеральные удобрения, не содержащие балластных примесей и неусвояемого фосфора, используя в качестве сырья бедные фосфориты Вятско-Камского, Егорьевского, Полпинского месторождений.

Способ осуществляют следующим образом.

Фосфатное сырье, в частности концентрат бедных фосфоритов Вятско-Камского, Егорьевского, Полпинского месторождений, прокаливают при температуре 900-1100°С (предпочтительно 950-1050°С). Понижение температуры обжига приводит к ухудшению качества обожженного полупродукта, повышение может приводить к плавлению шихты и сопровождаться потерями фосфора. Предпочтительно применение кускового сырья 10-100 мм, однако возможно использовать и более крупные (до 50-70 см) или мелкие куски (0,5-10 мм) и даже фосфоритную муку (размер частиц 50-200 мкм). Продолжительность прокаливания зависит от размера частиц и составляет 10-120 мин, предпочтительно 20-60 мин.

Прокаленное фосфатное сырье подвергают измельчению и рассеиванию. Размер частиц природного фосфата, направляемого на кислотное разложение, должен составлять 3,1-5 мм, предпочтительно 3,1-4,0 мм, Более мелкие частицы ухудшают условия отделения нерастворимого остатка (забивают фильтры, медленно осаждаются при отстаивании), более крупные - медленнее растворяются в кислоте.

Измельченное сырье подвергают разложению минеральными кислотами, предпочтительно соляной или азотной или смесью азотной и серной кислот. Использование чистой серной кислоты нежелательно, поскольку образуется вязкая, густая пульпа, выделение фосфора из которой затруднительно. Процесс проводят при интенсивном перемешивании реакционной массы. Температура проведения процесса 10-30°С, предпочтительно 20-25°С (комнатная). Повышение приводит к переходу в раствор примесных соединений, в первую очередь железа и алюминия, понижение увеличивает вязкость системы и понижает выход фосфора в раствор. Предпочтительный расход кислоты составляет 400-600 г 100% соляной кислоты на 1 кг непрокаленного фосфорита (особо предпочтительно 1,8-2,1 моль НСl на 1 моль Са, содержащегося в сырье) или 950-1150 г 100% азотной кислоты на 1 кг непрокаленного фосфорита (особо предпочтительно 2,2-2,6 моль HNO3 на 1 моль Са). Возможна замена до 25% азотной кислоты на серную, в мольном соотношении 2:1. Концентрация применяемых кислот составляет: 10-20% - соляной, 45-55% - азотной, до 60% - серной. Повышение концентрации кислот увеличивает вязкость системы, снижая скорость разложения фосфатного сырья и затрудняя отделение нерастворимого остатка, понижение приводит к избыточному разбавлению растворов и увеличению объемов оборудования. Время проведения процесса зависит от вышеуказанных факторов (температура, стехиометрия и концентрация кислоты, гранулометрический состав минерального сырья) и составляет 60-150 мин. При этих условиях степень выделения фосфора в раствор составляет 98-99%, а большая часть примесей железа и алюминия (70-90%) остается в нерастворимом остатке.

Отделение нерастворимого остатка осуществляют при помощи известных процедур на стандартном оборудовании, например, отстаиванием, центрифугированием, фильтрованием на вакуумным фильтрах и фильтр-прессах. Предпочтительно использование вакуум-фильтров барабанного, ленточного типов и т.п. Для облегчения этих операций возможно нагревание пульпы до 50-60°С для снижения вязкости. Увеличение температуры выше 60°С нежелательно, поскольку может привести к выделению примесей переходных металлов в фосфорно-кислотный раствор. Нерастворимый остаток промывают и выбрасывают в отвал. В дальнейшем он может использоваться в качестве наполнителей или в качестве сырья для выделения содержащихся в нем ценных примесных соединений. Промывные воды объединяют с фосфорно-кислотным раствором.

Отфильтрованный фосфорно-кислотный раствор подвергают нейтрализации. В качестве нейтрализатора возможно использование карбоната кальция (мела или известняка), оксида или гидроксида кальция, аммиака и его водных растворов, гидроксидов или карбонатов натрия или калия. Предпочтительно использовать мел или оксид кальция для нейтрализации солянофосфорнокислых растворов и аммиак, аммиачную воду, гидроксид или карбонат калия для нейтрализации азотнофосфорнокислых растворов. Из азотнофосфорнокислотных растворов избыточный кальций может быть предварительно выделен известными методами (вымораживанием, выпариванием и кристаллизацией из пересыщенного раствора, осаждением сульфатанионами).

Сущность изобретения может быть проиллюстрирована на следующих примерах.

Пример 1

Были взяты образцы природных фосфоритов А, В и С, химический состав которых указан в таблице 1. Минерал А представлял собой измельченный фосфорит с размером частиц <100 мкм, минерал В - кусковой фосфорит с размером частиц 10-400 мм, минерал С - измельченный фосфорит с размером частиц <350 мкм. Образцы были прокалены в муфельной печи при температуре 900-1050°С, в течение 15-60 минут. Химический состав прокаленных фосфоритов приведен в табл.1. Как видно, в данных условиях происходит полное выгорание органических и разложение карбонатсодержащих примесей, потерь фосфора не наблюдается. С увеличением размеров частиц минерала требуется увеличение времени прокаливания. Анализ компонентов проводили согласно ГОСТам (ГОСТ 24596.1-81 - определение фтора, ГОСТ 24596.3-81 - фосфора, ГОСТ 3594.13-93 - алюминия, ГОСТ 2642.5-97 - железа, ГОСТ 24596.5-81 - кальция).

Таблица 1 Химический состав исходных и прокаленных фофоритов Фосфорит Условия прокаливания Содержание, мас.% Температура, °С Время, мин Са Р2O5 F СО32- С, орг.- Fe2O3 Al2O3 Н/о* А - - 26,4 21,6 2,3 9,2 0,2 5,1 2,5 16,1 В - - 26,1 20,5 2,1 12,6 0,25 5,9 3,2 23,8 С - - 31,4 27,5 2,4 0 0 4,4 2,0 15,5 А-1 900 30 28,3 23,2 2,5 0,1 0 5,5 2,7 17,3 А-2 1050 30 28,3 23,2 2,5 0 0 5,5 2,7 17,3 В-1 1000 30 28,7 22,5 2,3 0,5 0 6,5 3,5 26,1 В-2 1000 60 28,8 22,6 2,3 0 0 6,5 3,5 26,2 С-1 1000 15 31,4 27,5 2,4 0 0 4,4 2,0 15,5 * - нерастворимый в кислоте остаток

Пример 2

К 100 частям непрокаленного фосфорита А из примера 1 добавляли 254 части 20% соляной кислоты при 50°С в течение 30 минут при интенсивном перемешивании. Затем суспензию выдерживали при той же температуре 60 минут, продолжая перемешивание. Процесс сопровождался интенсивным пенообразованием, объем пены:объем суспензии составлял 10:1. После окончания реакции маточный раствор отделяли от осадка отстаиванием и фильтрованием (фильтровальная ткань - полипропилен, вакуум - 0,5 атм) при той же температуре, нерастворимый остаток промывали на фильтре. Скорость отстаивания не превышала 3 мм/ч, производительность фильтрования по влажному остатку - <8 кг/м2·ч. Степень извлечения фосфора в раствор составила 95,5%, железа и алюминия - 51% (здесь и далее считается суммарное количество компонента в маточном растворе и промывных водах).

Пример 3

К 100 частям прокаленных фосфоритов А-1, А-2 из примера 1 добавляли 242 части 20% соляной кислоты при комнатной температуре в течение 15 минут при интенсивном перемешивании. Затем суспензию выдерживали при той же температуре 60 минут, продолжая перемешивание. Пенообразования не наблюдалось. После окончания реакции маточный раствор отделяли от осадка при 50°С, нерастворимый остаток промывали на фильтре. Производительность фильтрования и выходы фосфора, железа и алюминия в раствор приведены в таблице 2.

Таблица 2 Разложение прокаленного фосфорита А Фосфорит Производительность фильтрования, кг/м2·ч Выход в раствор, мас.% Р2O5 Fe Al А-1 100 98,3 23,7 25,2 А-2 130 99,0 14,5 12,1

Пример 4

К 100 частям прокаленных фосфоритов А-1, А-2 из примера 1 добавляли 226 частей 52% азотной кислоты при комнатной температуре в течение 15 минут при интенсивном перемешивании. Затем суспензию выдерживали при той же температуре 90 минут, продолжая перемешивание. Пенообразования и выделения оксидов азота не наблюдалось. После окончания реакции маточный раствор отделяли от осадка при 60°С, нерастворимый остаток промывали на фильтре. Производительность фильтрования и выходы фосфора, железа и алюминия в раствор приведены в таблице 3.

Таблица 3 Разложение прокаленного фосфорита А Фосфорит Производительность фильтрования, кг/м2·ч Выход в раствор, мас.% Р2O5 Fe A1 А-1 80 98,1 12,1 11,9 А-2 110 99,2 11,1 15,8

Пример 5

Прокаленные фосфориты В-1, В-2 измельчали и рассеивали при помощи набора сит. Фракции с различным гранулометрическим составом обрабатывали соляной кислотой, как описано в примере 3, увеличив время разложения с 60 мин до 90 мин. Нерастворимый остаток фильтровали при 50°С (см. пример 3). Производительность фильтрования и выходы фосфора, железа и алюминия в раствор приведены в таблице 4.

Таблица 4 Разложение прокаленного фосфорита В Фосфорит Гранулометрический состав, мм Производительность фильтрования,
кг/м2·ч
Выход в раствор, мас.%
P2O5 Fe Al В-1 3-5 170 95,3 25,6 21,5 В-1 <3 90 97,7 28,0 26,2 В-2 5-10 930 94,5 10,8 9,9 В-2 4,5-5 890 97,0 11,6 10,2 В-2 4-4,5 910 98,2 13,1 14,4 В-2 3,1-4 940 98,9 14,6 12,7 В-2 0,2-3,1 710 99,3 16,5 11,4 В-2 <0,2 180 98,9 18,3 16,0

Пример 6

Прокаленные фосфориты В-1, В-2 измельчали и рассеивали при помощи набора сит. Фракции с различным гранулометрическим составом обрабатывали азотной кислотой, как описано в примере 4, увеличив время разложения с 90 мин до 105 мин. Нерастворимый остаток фильтровали при 60°С (см. пример 4). Производительность фильтрования и выходы фосфора, железа и алюминия в раствор приведены в таблице 5.

Пример 7

Прокаленный фосфорит С-1 рассеивали при помощи набора сит. Фракции с различным гранулометрическим составом обрабатывали соляной кислотой, как описано в примере 3. Нерастворимый остаток фильтровали (см. пример 3). Производительность фильтрования и выходы фосфора, железа и алюминия в раствор приведены в таблице 6.

Таблица 6 Разложение прокаленного фосфорита С-1 Гран. состав, мкм Производительность фильтрования, кг/м2·ч Выход в раствор, мас.% Р2O5 Fe Al 200-350 250 99,2 15,5 14,9 50-200 110 98,6 14,3 14,0 <50 50 99,0 19,8 21,1

Пример 8

К 100 частям прокаленного фосфорита В-2 фракции 3,1-5 мм добавляли 158 частей 52% азотной и 27 частей серной кислоты, разбавленной до концентрации 40-98%. Условия разложения и отделения нерастворимого остатка те же, что и в примере 4. Производительность фильтрования суспензии приведена в таблице 7. При использовании фосфорита В-2 размером частиц менее 1 мм производительность фильтрования уменьшалась до 200-250 кг/м2·ч даже при использовании разбавленной кислоты.

Таблица 7 Разложение фосфорита В-2 смесью серной и азотной кислот Концентрация H2SO4, мас.% Производительность фильтрования, кг/м2·ч 40 670 60 550 80 40 98 <1

Пример 9

К 100 частям прокаленного фосфорита В-2 фракции 3,1-5 мм добавляли 158 частей 52% азотной и 40-60 частей 60% серной кислоты. Условия разложения и отделения нерастворимого остатка те же, что и в примере 4. Производительность фильтрования суспензии приведена в таблице 8.

Таблица 8 Разложение фосфорита В-2 смесью серной и азотной кислот Количество H2SO4, мас.ч. Производительность фильтрования, кг/м2·ч 40 505 50 440 60 210

Пример 10

Прокаленный фосфорит В-2 измельчали и рассеивали при помощи сит. 1000 частей фракции 3,1-4 мм смешивали с 2600 частей азотной кислоты концентрации 54% и выдерживали при комнатной температуре в течение 105 минут при интенсивном перемешивании. Образовавшуюся пульпу фильтровали на вакуумном фильтре при 60°С. Получено 600 влажного осадка и 3000 частей азотнофосфорнокислого раствора (АФР), производительность фильтрования составляла 550 кг/м2·ч. Осадок промывали на фильтре 1100 частями рецикловых вод промывки преципитата, получено 450 частей осадка и 1250 частей промывных вод. АФР охлаждали до -5°С, при этом кристаллизовался Са(NO3)2·4Н2O в количестве 1000 частей. Охлажденный АФР в количестве 2000 частей смешивали с промывными водами (1250 частей), через раствор пропускали газообразный аммиак. Аммонизированный АФР (ААФР) фильтровали, преципитатный осадок в количестве 1000 частей промывали 1000 частей воды. Промывные воды в количестве 1150 частей использовали для промывки нерастворимого остатка кислотного разложения. После сушки отмытого преципитатного остатка получали 370 частей порошка, содержащего 40,3 мас.% Р2О5, весь фосфор в цитратно-растворимой форме. После упаривания фильтрата ААФР было получено 740 частей комплексного NP-удобрения, содержащего 17,5% Р2О5, 19% N, весь фосфор в водорастворимой форме.

Таким образом, предлагаемый способ позволяет получать квалифицированные фосфорные и комплексные удобрения, не содержащие балластных примесей и неусвояемого растениями фосфора, исходя из бедного фосфоритного сырья, в частности - фосфоритного концентрата Вятско-Камского, Егорьевского, Полпинского месторождений.

При этом повышается производительность процесса за счет ускорения фильтрования нерастворимого остатка, удаления примесей железа и алюминия из фосфорно-кислотного раствора, исключения стадий разбавления и упаривания фосфорно-кислотного раствора.

Похожие патенты RU2389712C2

название год авторы номер документа
Способ кислотной переработки бедного фосфатного сырья 2016
  • Почиталкина Ирина Александровна
  • Филенко Игорь Анатольевич
  • Кондаков Дмитрий Феликсович
  • Сибирякова Елена Михайловна
  • Колесников Владимир Александрович
RU2634948C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ 1999
  • Дмитревский Б.А.
  • Дремов А.В.
  • Стародубцев Л.А.
  • Треущенко Н.Н.
  • Юрьева В.И.
RU2162071C2
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ 1999
  • Дмитревский Б.А.
  • Дремов А.В.
  • Стародубцев Л.А.
  • Треущенко Н.Н.
  • Юрьева В.И.
RU2145316C1
СПОСОБ ПЕРЕРАБОТКИ ВЯТСКО-КАМСКОГО ФОСФОРИТА 2000
  • Гольдинов А.Л.
  • Дрождин Б.И.
  • Дедов А.С.
  • Мачехин Г.Н.
  • Абрамов О.Б.
  • Уткин В.В.
  • Сеземин В.А.
  • Логинов Н.Д.
  • Афанасенко Е.В.
RU2174969C1
СПОСОБ ПЕРЕРАБОТКИ ВЯТСКО-КАМСКОГО ФОСФОРИТА 2000
  • Гольдинов А.Л.
  • Дрождин Б.И.
  • Дедов А.С.
  • Мачехин Г.Н.
  • Абрамов О.Б.
  • Уткин В.В.
  • Сеземин В.А.
  • Логинов Н.Д.
  • Афанасенко Е.В.
RU2174968C1
СПОСОБ ПОЛУЧЕНИЯ АЗОТНОКИСЛОТНОГО РАСТВОРА БЕДНОГО ФОСФАТНОГО СЫРЬЯ 2008
  • Киселевич Петр Викторович
  • Хохлов Владимир Михайлович
  • Гараев Руслан Мансурович
  • Кощеев Владимир Анатольевич
  • Абрамов Олег Борисович
  • Терещенко Ольга Леонидовна
  • Медянцева Дарья Геннадьевна
  • Береснева Мария Леонидовна
  • Копылова Елена Валерьевна
RU2388733C1
СПОСОБ ИЗВЛЕЧЕНИЯ ФОСФОРА ИЗ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ ПЕРЕРАБОТКИ ВЯТСКО-КАМСКИХ ФОСФОРИТОВ 2008
  • Гольдинов Авраам Липович
  • Безруких Наталья Александровна
RU2375334C1
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРНОЙ КИСЛОТЫ ИЗ ЖЕЛВАКОВЫХ ФОСФОРИТОВ 1998
  • Комаров М.А.(Ru)
  • Киперман Ю.А.(Ru)
  • Сандт Фридрих Фридрихович
RU2120405C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО НЕЙТРАЛИЗОВАННОГО СУПЕРФОСФАТА 1999
  • Дмитревский Б.А.
  • Дремов А.В.
  • Рязанова В.В.
  • Стародубцев Л.А.
  • Треущенко Н.Н.
  • Юрьева В.И.
RU2156754C1
СПОСОБ ПОЛУЧЕНИЯ АЗОТНО-КИСЛОТНОЙ ВЫТЯЖКИ ИЗ ВЯТСКО-КАМСКОГО ФОСФОРИТА 2005
  • Гольдинов Авраам Липович
  • Афанасенко Елена Васильевна
RU2288906C1

Реферат патента 2010 года СПОСОБ КИСЛОТНОЙ ПЕРЕРАБОТКИ БЕДНЫХ ФОСФОРИТОВ

Изобретение относится к области промышленности удобрений, в частности к производству сложных минеральных удобрений путем кислотного разложения природных фосфатов. В способе кислотной переработки бедных фосфоритов, включающем предварительное прокаливание минерального сырья, кислотное разложение, отделение фосфорно-кислотного раствора от нерастворимого остатка с последующей переработкой его в фосфорное или комплексное удобрение, после прокаливания минерального сырья производят его измельчение до частиц размером 3,1-5 мм, при этом кислотное разложение измельченного сырья проводят при температуре 10-30°С соляной кислотой или азотной кислотой или смесью азотной и серной кислот. Кислотное разложение измельченного сырья проводят соляной кислотой, содержащей 10-20% хлороводорода, или азотной кислотой, содержащей 45-55% азотной кислоты, или смесью азотной и серной кислот, содержащей до 25% массовых серной кислоты. Фосфорно-кислотный раствор отделяют от нерастворимого остатка фильтрованием при температуре 50-60°С. Способ позволяет повысить производительность за счет ускорения фильтрования нерастворимого остатка, удаления примесей железа и алюминия из фосфорно-кислотного раствора, исключения стадий разбавления и упаривания фосфорно-кислотного раствора. 2 з.п. ф-лы, 8 табл.

Формула изобретения RU 2 389 712 C2

1. Способ кислотной переработки бедных фосфоритов, включающий предварительное прокаливание минерального сырья, кислотное разложение, отделение фосфорно-кислотного раствора от нерастворимого остатка с последующей переработкой его в фосфорное или комплексное удобрение, отличающийся тем, что после прокаливания минерального сырья производят его измельчение до частиц размером 3,1-5 мм, при этом кислотное разложение измельченного сырья проводят при температуре 10-30°С соляной кислотой или азотной кислотой или смесью азотной и серной кислот.

2. Способ по п.1, отличающийся тем, что кислотное разложение измельченного сырья проводят соляной кислотой, содержащей 10-20% хлороводорода, или азотной кислотой, содержащей 45-55% азотной кислоты, или смесью азотной и серной кислот, содержащей до 25% массовых серной кислоты.

3. Способ по п.1, отличающийся тем, что фосфорно-кислотный раствор отделяют от нерастворимого остатка фильтрованием при температуре 50-60°С.

Документы, цитированные в отчете о поиске Патент 2010 года RU2389712C2

СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО МИНЕРАЛЬНОГО УДОБРЕНИЯ 1999
  • Гольдинов А.Л.
  • Дрождин Б.И.
  • Дедов А.С.
  • Абрамов О.Б.
  • Уткин В.В.
  • Афанасенко Е.В.
  • Мачехин Г.Н.
  • Логинов Н.Д.
RU2154045C1
Способ получения сложного удобрения из бедных фосфоритов 1983
  • Долгорев Анатолий Васильевич
  • Каражанов Нариман Абдрахманович
  • Дарер Раиса Срулевна
SU1119998A1
НАБИЕВ М.Н
Азотнокислотная переработка фосфатов
- Ташкент: Издательство академии наук Узбекской ССР, 1957, с.58, 61-62, 68
Способ получения фосфорного удобрения 1979
  • Болдырев Владимир Вячеславович
  • Чайкина Марина Васильевна
  • Федоров Анатолий Андронович
  • Колосов Андрей Селафиилович
  • Гордеева Галина Ивановна
  • Жирнов Евгений Николаевич
  • Помощников Эдуард Евдокимович
SU827462A1
US 3199972 А, 10.08.1965.

RU 2 389 712 C2

Авторы

Спиридонов Василий Сергеевич

Генкин Михаил Владимирович

Даты

2010-05-20Публикация

2008-02-12Подача