СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕСЕЧЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2011 года по МПК F17D5/06 

Описание патента на изобретение RU2413902C1

Изобретения относятся к трубопроводному транспорту и могут быть использованы для контроля технического состояния пересечений магистральных трубопроводов (МТ).

При взаимном пересечении МТ могут возникать нежелательные процессы, связанные с их взаимодействием, имеющие различную физическую природу, например нестабильность пространственного положения МТ, которое может привести как к появлению силового контакта между трубопроводами, так и к повышению уровня напряженно-деформированного состояния. Также может быть превышена допустимая разность потенциалов пересекающихся трубопроводов, что может привести к образованию опасных токов утечки и резкому усилению коррозионных процессов.

В настоящее время в патентной и научно-технической литературе отсутствуют аналоги, направленные на решение поставленной задачи.

Ниже приводятся описания технических решений, не имеющих аналогов. Способ контроля технического состояния пересечений МТ заключается в том, что измеряют значение электрического сопротивления R между пересекающимися трубопроводами и при R<R0, где R0 - пороговое значение, диагностируют угрозу опасного состояния пересечения.

Пороговое значение R0 задают в интервале от 1 до 5 Ом.

Электрическое сопротивление R измеряют на переменном токе.

Частоту переменного тока задают в интервале от 200 до 400 Гц.

Электрическое сопротивление R измеряют на постоянном токе.

Силу постоянного тока задают в интервале от 50 мА до 1 А.

Система контроля технического состояния пересечений магистральных трубопроводов содержит источник тока и усилитель, подключенные параллельно к контролируемой паре пересекающихся трубопроводов в месте их пересечения и последовательно соединенные аналого-цифровой преобразователь и микропроцессор, а также блок передачи цифровой информации и регистратор, при этом выход усилителя подключен ко входу аналого-цифрового преобразователя, а выходы микропроцессора - к регистратору и управляемым входам источника тока и блока передачи цифровой информации.

Система дополнительно содержит датчик утечки транспортируемой среды, выход которого подключен через дополнительно введенный аналого-цифровой преобразователь к микропроцессору.

Блок передачи цифровой информации выполнен в виде радиомодема, или блока передачи цифровой информации по кабелю, или блока передачи цифровой информации по трубопроводу.

Система содержит дисплей, установленный в диспетчерском пункте оперативного контроля состояния пересечения трубопроводов.

Система содержит сервер сбора, хранения и отображения информации, средства оповещения служб оперативного реагирования об опасном состоянии пересечения.

Изобретения поясняются чертежом, на котором представлена схема системы для реализации способа контроля технического состояния для одного пересечения двух МТ.

Данные способ и система могут быть последовательно или одновременно применены для множества пересечений МТ.

Система контроля технического состояния пересечения 1 трубопроводов 2, 3 содержит электроды 4, 5, приваренные соответственно к трубопроводам 2, 3, с которыми параллельно электрически соединены усилитель 6 и источник постоянного или переменного тока 7.

Имеются также последовательно соединенные аналого-цифровой преобразователь (АЦП) 8 и микропроцессор (МП) 9, а также блок 10 передачи цифровой информации (БПЦИ) 10, выполненный в виде радиомодема или блоков передачи информации по кабелю или трубопроводу. Информация передается на диспетчерский пункт контроля состояния пересечения МТ (на чертеже не показан).

Система включает в себя регистратор 11 технического состояния пересечения МТ 2 и 3. Система может дополнительно содержать датчик утечки транспортируемой среды, выход которого подключен через дополнительно введенный АЦП к МП 9 (датчик утечки и дополнительный АЦП на чертеже не приведены).

Система также включает в себя дисплей, установленный в диспетчерском пункте, и сервер сбора, хранения и отображения информации (на чертеже не показаны).

Система может включать в себя средства оповещения служб оперативного реагирования об опасном состоянии пересечения (на чертеже не показаны).

Способ реализуется следующим образом на примере двух пересекающихся трубопроводов.

С помощью источника 7 постоянного или переменного токов замыкается электрическая цепь электрод 4, МТ 3, грунт межтрубного пространства в месте пересечения 1 трубопроводов 2,3, МТ 2, электрод 5.

При этом в зависимости от значения электрического сопротивления R между парой МТ 2 и 3 величина сигнала, поступающего с электродов 4,5 на усилитель 6 будет различной.

В свою очередь величина электрического сопротивления R между парой трубопроводов 2,3 будет зависеть от расстояния между МТ и состояния грунта в промежутке между трубопроводами в месте пересечения 1.

Изменение расстояния между трубопроводами в месте контролируемого пересечения 1 может привести к появлению опасного силового контакта у МТ, а изменение физико-химического состояния грунта - к резкому ускорению коррозионных процессов в месте пересечения трубопроводов. Оба процесса ведут к появлению опасного состояния контролируемого пересечения.

После усилителя 6 сигнал R через АЦП 8 подается на вход МП 9, где сравнивается с опорным значением сопротивления R0, значение которого задается исходя из расчетно-экспериментальных данных конкретного пересечения МТ. Как показали эксперименты, R0 лежит в интервале (1,0…5,0) Ом для большинства пересечений МТ.

Для диагностики штатного состояния пересечения МТ значение R не должно быть ниже наперед заданного порогового значения R0.

Значение R0 заносится заранее в МП 9, сигнал с которого направляется на регистратор 11 и БПЦИ 10. Информация о техническом состоянии пересечений трубопроводов передается на диспетчерский пункт (не показан).

Измерение сопротивления R можно проводить как на переменном, так и на постоянном токах. В первом случае используют переменный ток частотой (200…400) Гц, во втором - постоянный ток силой (0,05…5) А.

Данные величины являются оптимальными для решения поставленной задачи и подобраны расчетно-экспериментальным путем для типовых пересечений МТ.

Похожие патенты RU2413902C1

название год авторы номер документа
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕСЕЧЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Горяев Юрий Анатольевич
  • Демьянов Алексей Евгеньевич
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Мелкумян Самвел Эдуардович
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
RU2433332C2
СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ВЗАИМНЫХ ПЕРЕСЕЧЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ (ВАРИАНТЫ) 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Демьянов Алексей Евгеньевич
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Салюков Вячеслав Васильевич
  • Степаненко Александр Иванович
RU2427752C2
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕСЕЧЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Демьянов Алексей Евгеньевич
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Салюков Вячеслав Васильевич
  • Степаненко Александр Иванович
RU2423643C2
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
  • Сидорочев Михаил Евгеньевич
RU2423644C2
СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДВОДНОГО МАГИСТРАЛЬНОГО ТРУБОПРОВОДА 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
RU2433334C2
СИСТЕМА ДЛЯ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕХОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА ЧЕРЕЗ ДОРОГУ 2009
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
RU2433335C2
УСТРОЙСТВО ПОИСКА МЕСТ УТЕЧЕК МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2010
  • Алексеев Сергей Петрович
  • Амирагов Алексей Славович
  • Аносов Виктор Сергеевич
  • Бродский Павел Григорьевич
  • Воронин Василий Алексеевич
  • Дикарев Виктор Иванович
  • Куценко Николай Николаевич
  • Никитин Александр Дмитриевич
  • Павлюченко Евгений Евгеньевич
  • Переяслов Леонид Павлович
  • Руденко Евгений Иванович
  • Садков Сергей Александрович
  • Суконкин Сергей Яковлевич
  • Тарасов Сергей Павлович
  • Чернявец Владимир Васильевич
  • Шалагин Николай Николаевич
RU2439520C1
СИСТЕМА ВИДЕОНАБЛЮДЕНИЯ ЗА ОПАСНЫМ УЧАСТКОМ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА 2007
  • Власов Сергей Викторович
  • Губанок Иван Иванович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Ланчаков Григорий Александрович
  • Пиксайкин Роман Владимирович
  • Салюков Вячеслав Васильевич
  • Сеченов Владимир Сергеевич
  • Степаненко Александр Иванович
RU2334163C1
СИСТЕМА КОНТРОЛЯ ПЕРЕХОДА ТРУБОПРОВОДА С УСТРОЙСТВОМ КАТОДНОЙ ЗАЩИТЫ ПОД АВТО- И ЖЕЛЕЗНЫМИ ДОРОГАМИ 2004
  • Власов С.В.
  • Грунин А.М.
  • Губанок И.И.
  • Дудов А.Н.
  • Егурцов С.А.
  • Митрохин М.Ю.
  • Пиксайкин Р.В.
  • Салюков В.В.
  • Сеченов В.С.
  • Степаненко А.И.
  • Харионовский В.В.
RU2264578C1
СПОСОБ КОРРОЗИОННОГО МОНИТОРИНГА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА С УСТРОЙСТВОМ КАТОДНОЙ ЗАЩИТЫ 2010
  • Аксютин Олег Евгеньевич
  • Власов Сергей Викторович
  • Демьянов Алексей Евгеньевич
  • Егурцов Сергей Алексеевич
  • Мелкумян Самвел Эдуардович
  • Петров Николай Георгиевич
  • Пиксайкин Роман Владимирович
  • Степаненко Александр Иванович
RU2422717C1

Реферат патента 2011 года СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПЕРЕСЕЧЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Способ контроля технического состояния пересечений магистральных трубопроводов и система для его реализации относятся к трубопроводному транспорту и могут быть использованы для контроля технического состояния пересечений магистральных трубопроводов. Способ заключается в измерении электрического сопротивления R между парой пересекающихся магистральных трубопроводов и непрерывном сравнении измеренных значений с соответствующим опорным значением R0. При R<R0 диагностируют угрозу опасного состояния пересечения. Система контроля технического состояния пересечений магистральных трубопроводов содержит источник тока и усилитель, подключенные параллельно к контролируемой паре пересекающихся трубопроводов в месте их пересечения, и последовательно соединенные аналого-цифровой преобразователь и микропроцессор, а также блок передачи цифровой информации и регистратор, при этом выход усилителя подключен ко входу аналого-цифрового преобразователя, а выходы микропроцессора - к регистратору и управляемым входам источника тока и блока передачи цифровой информации. Технический результат - устранение угрозы опасного состояния пересечения магистральных трубопроводов. 2 н. и 12 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 413 902 C1

1. Способ контроля технического состояния пересечений магистральных трубопроводов, заключающийся в том, что измеряют значение электрического сопротивления R между пересекающимися трубопроводами и при R<R0, где R0 - пороговое значение, диагностируют угрозу опасного состояния пересечения.

2. Способ по п.1, отличающийся тем, что пороговое значение R0 задают в интервале от 1 до 5 Ом.

3. Способ по п.1, отличающийся тем, что электрическое сопротивление R измеряют на переменном токе.

4. Способ по п.2, отличающийся тем, что частоту переменного тока задают в интервале от 200 до 400 Гц.

5. Способ по п.1, отличающийся тем, что электрическое сопротивление R измеряют на постоянном токе.

6. Способ по п.5, отличающийся тем, что силу постоянного тока задают в интервале от 50 мА до 1 А.

7. Система контроля технического состояния пересечений магистральных трубопроводов, содержащая источник тока и усилитель, подключенные параллельно к контролируемой паре пересекающихся трубопроводов в месте их пересечения, и последовательно соединенные аналого-цифровой преобразователь и микропроцессор, а также блок передачи цифровой информации и регистратор, при этом выход усилителя подключен ко входу аналого-цифрового преобразователя, а выходы микропроцессора - к регистратору и управляемым входам источника тока и блока передачи цифровой информации.

8. Система по п.7, отличающаяся тем, что дополнительно содержит датчик утечки транспортируемой среды, выход которого подключен через дополнительно введенный аналого-цифровой преобразователь к микропроцессору.

9. Система по п.7, отличающаяся тем, что блок передачи цифровой информации выполнен в виде радиомодема.

10. Система по п.7, отличающаяся тем, что блок передачи цифровой информации выполнен в виде блока передачи цифровой информации по кабелю.

11. Система по п.7, отличающаяся тем, что блок передачи цифровой информации выполнен в виде блока передачи цифровой информации по трубопроводу.

12. Система по п.7, отличающаяся тем, что дополнительно содержит дисплей, установленный в диспетчерском пункте оперативного контроля состояния пересечения трубопроводов.

13. Система по п.7, отличающаяся тем, что дополнительно содержит сервер сбора, хранения и отображения информации.

14. Система по п.7, отличающаяся тем, что дополнительно содержит средства оповещения служб оперативного реагирования об угрозе опасного состояния пересечения.

Документы, цитированные в отчете о поиске Патент 2011 года RU2413902C1

УСТРОЙСТВО ДЛЯ МОНИТОРИНГА НАПРЯЖЕНИЯ В СТАЛЬНЫХ ПОДЪЕМНЫХ ТРУБОПРОВОДАХ, УЛОЖЕННЫХ ПО ЦЕПНОЙ ЛИНИИ 2003
  • Моррисон Денби Грей
  • Дин Джереми Ричард
RU2326345C2
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПАРЫ МАГИСТРАЛЬНЫЙ ТРУБОПРОВОД-ЗАЩИТНЫЙ ПАТРОН 2006
  • Власов Сергей Викторович
  • Губанок Иван Иванович
  • Дудов Александр Николаевич
  • Егурцов Сергей Алексеевич
  • Митрохин Михаил Юрьевич
  • Пиксайкин Роман Владимирович
  • Салюков Вячеслав Васильевич
  • Сеченов Владимир Сергеевич
  • Степаненко Александр Иванович
RU2317479C1
Способ контроля протяженных цилиндрических металлопроводов 1986
  • Джала Роман Михайлович
SU1363080A1
US 4289019 А, 15.09.1981
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЕМКОСТИ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2012
  • Вьюхин Вячеслав Николаевич
RU2498325C1

RU 2 413 902 C1

Авторы

Аксютин Олег Евгеньевич

Власов Сергей Викторович

Демьянов Алексей Евгеньевич

Дудов Александр Николаевич

Егурцов Сергей Алексеевич

Митрохин Михаил Юрьевич

Пиксайкин Роман Владимирович

Салюков Вячеслав Васильевич

Степаненко Александр Иванович

Даты

2011-03-10Публикация

2009-08-05Подача